Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H) films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ) solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2...

Full description

Saved in:
Bibliographic Details
Main Authors: Taweewat Krajangsang, Apichan Moollakorn, Sorapong Inthisang, Amornrat Limmanee, Kobsak Sriprapha, Nattaphong Boriraksantikul, Tianchai Taratiwat, Nirod Akarapanjavit, Jaran Sritharathikhun
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2014/251508
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H) films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ) solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc), fill factor (FF), and temperature coefficient (TC) of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79). The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.
ISSN:1110-662X
1687-529X