How and why small volcanic ocean islands collapse and move vertically up and down

Abstract Mass controls two major processes in volcanic islands: large-scale collapse and vertical movements. Therefore, large islands like Hawaii are gradually subsiding and have undergone massive landsliding. What if the mass is much smaller, and there is good evidence that the vertical movement is...

Full description

Saved in:
Bibliographic Details
Main Authors: Fernando O. Marques, Luísa P. Ribeiro, Christian Hübscher, Ana C. G. Costa, Anthony Hildenbrand
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-87191-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832571854629371904
author Fernando O. Marques
Luísa P. Ribeiro
Christian Hübscher
Ana C. G. Costa
Anthony Hildenbrand
author_facet Fernando O. Marques
Luísa P. Ribeiro
Christian Hübscher
Ana C. G. Costa
Anthony Hildenbrand
author_sort Fernando O. Marques
collection DOAJ
description Abstract Mass controls two major processes in volcanic islands: large-scale collapse and vertical movements. Therefore, large islands like Hawaii are gradually subsiding and have undergone massive landsliding. What if the mass is much smaller, and there is good evidence that the vertical movement is more complex than simple loading-related subsidence? Here, we show that small volcanic islands, seemingly stable because of the small mass, can undergo sector collapses that can affect the vertical movement of the island. Santa Maria Island (Azores) is ca. 170 times smaller than Hawaii; however, it has collapsed more than once, as inferred from new onshore and marine geophysical data. From the vertical distribution of submarine and subaerial lavas, we can infer a complex subsidence and uplift history (seamount-island-seamount-island, meaning that Santa Maria has been an island twice), which is most likely the consequence of alternating volcanic construction (loading = subsidence) and large-scale destruction by sector collapse (unloading = uplift). Given the age difference between Santa Maria and the underlying oceanic crust, the island likely sits on several hundred meters of marine sediments that could behave as a weak layer (detachment) under shear. We evaluate the likely collapse mechanism by numerical modelling and conclude that small volcanic islands can collapse when both the edifice and its substrate are weak. The proximity of Santa Maria to the East Azores Fault, active during the volcanic lifetime of Santa Maria, may point to the trigger mechanism of the flank collapses. The inferred instability factor, a weak substrate, could be responsible for similar evolutions in other volcanic ocean islands sitting on sediments overlying the igneous oceanic crust.
format Article
id doaj-art-5563a3590ce14feab9e2901c0529140d
institution Kabale University
issn 2045-2322
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-5563a3590ce14feab9e2901c0529140d2025-02-02T12:16:00ZengNature PortfolioScientific Reports2045-23222025-01-0115112210.1038/s41598-025-87191-5How and why small volcanic ocean islands collapse and move vertically up and downFernando O. Marques0Luísa P. Ribeiro1Christian Hübscher2Ana C. G. Costa3Anthony Hildenbrand4EMEPC – Task Group for the Extension of the Continental ShelfEMEPC – Task Group for the Extension of the Continental ShelfInstitute of Geophysics, University of HamburgInstitut für Geothermisches RessourcenmanagementGEOPS, Univ. Paris-Sud, CNRS, Université Paris-SaclayAbstract Mass controls two major processes in volcanic islands: large-scale collapse and vertical movements. Therefore, large islands like Hawaii are gradually subsiding and have undergone massive landsliding. What if the mass is much smaller, and there is good evidence that the vertical movement is more complex than simple loading-related subsidence? Here, we show that small volcanic islands, seemingly stable because of the small mass, can undergo sector collapses that can affect the vertical movement of the island. Santa Maria Island (Azores) is ca. 170 times smaller than Hawaii; however, it has collapsed more than once, as inferred from new onshore and marine geophysical data. From the vertical distribution of submarine and subaerial lavas, we can infer a complex subsidence and uplift history (seamount-island-seamount-island, meaning that Santa Maria has been an island twice), which is most likely the consequence of alternating volcanic construction (loading = subsidence) and large-scale destruction by sector collapse (unloading = uplift). Given the age difference between Santa Maria and the underlying oceanic crust, the island likely sits on several hundred meters of marine sediments that could behave as a weak layer (detachment) under shear. We evaluate the likely collapse mechanism by numerical modelling and conclude that small volcanic islands can collapse when both the edifice and its substrate are weak. The proximity of Santa Maria to the East Azores Fault, active during the volcanic lifetime of Santa Maria, may point to the trigger mechanism of the flank collapses. The inferred instability factor, a weak substrate, could be responsible for similar evolutions in other volcanic ocean islands sitting on sediments overlying the igneous oceanic crust.https://doi.org/10.1038/s41598-025-87191-5Santa Maria Island, AzoresVertical movementSector collapseBasement detachmentNumerical modellingMarine geophysical data
spellingShingle Fernando O. Marques
Luísa P. Ribeiro
Christian Hübscher
Ana C. G. Costa
Anthony Hildenbrand
How and why small volcanic ocean islands collapse and move vertically up and down
Scientific Reports
Santa Maria Island, Azores
Vertical movement
Sector collapse
Basement detachment
Numerical modelling
Marine geophysical data
title How and why small volcanic ocean islands collapse and move vertically up and down
title_full How and why small volcanic ocean islands collapse and move vertically up and down
title_fullStr How and why small volcanic ocean islands collapse and move vertically up and down
title_full_unstemmed How and why small volcanic ocean islands collapse and move vertically up and down
title_short How and why small volcanic ocean islands collapse and move vertically up and down
title_sort how and why small volcanic ocean islands collapse and move vertically up and down
topic Santa Maria Island, Azores
Vertical movement
Sector collapse
Basement detachment
Numerical modelling
Marine geophysical data
url https://doi.org/10.1038/s41598-025-87191-5
work_keys_str_mv AT fernandoomarques howandwhysmallvolcanicoceanislandscollapseandmoveverticallyupanddown
AT luisapribeiro howandwhysmallvolcanicoceanislandscollapseandmoveverticallyupanddown
AT christianhubscher howandwhysmallvolcanicoceanislandscollapseandmoveverticallyupanddown
AT anacgcosta howandwhysmallvolcanicoceanislandscollapseandmoveverticallyupanddown
AT anthonyhildenbrand howandwhysmallvolcanicoceanislandscollapseandmoveverticallyupanddown