An SIR epidemic model with vaccination in a patchy environment
In this paper, an SIR patch model with vaccination is formulated to investigate the effect of vaccination coverage and the impact of human mobility on the spread of diseases among patches. The control reproduction number $\mathfrak{R}_v$ is derived. It shows that the disease-free equilibrium is un...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2017-09-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2017059 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, an SIR patch model with vaccination is formulated to investigate the effect of vaccination coverage and the impact of human mobility on the spread of diseases among patches. The control reproduction number $\mathfrak{R}_v$ is derived. It shows that the disease-free equilibrium is unique and is globally asymptotically stable if $\mathfrak{R}_v \lt 1$ , and unstable if $\mathfrak{R}_v \gt 1$ . The sufficient condition for the local stability of boundary equilibria and the existence of equilibria are obtained for the case $n=2$ . Numerical simulations indicate that vaccines can control and prevent the outbreak of infectious in all patches while migration may magnify the outbreak size in one patch and shrink the outbreak size in other patch. |
---|---|
ISSN: | 1551-0018 |