Investigation of Microwave Irradiation Procedure for Synthesizing CdSe Quantum Dots
In recent years, microwave heating techniques for quantum dot (QD) synthesis have come to supplement the typical hot-injection methods. In addition to increasing control and replicability, microwave synthesis can be up-scaled to industry standards, an advantage that increases its lucrativeness. This...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/2402930 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, microwave heating techniques for quantum dot (QD) synthesis have come to supplement the typical hot-injection methods. In addition to increasing control and replicability, microwave synthesis can be up-scaled to industry standards, an advantage that increases its lucrativeness. This study depicts a strategy to take a hot-injection procedure for cadmium selenide (CdSe) QD synthesis that is safe enough for undergraduate research labs and adapt it to an easier, more energy-efficient microwave synthesis method. Additionally, this study details successes in synthesizing these QDs, along with some challenges, limitations, and peculiarities. For future users of this method, it is recommended to keep holding temperatures between 170°C and 240°C to achieve the highest monodispersity of CdSe QDs while also avoiding confounding effects, such as wide-spectrum photoluminescence and bulk CdSe precipitation. |
---|---|
ISSN: | 1687-8434 1687-8442 |