Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads

Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can...

Full description

Saved in:
Bibliographic Details
Main Authors: Ji-Yoon Ahn, Dong-Kwan Lee, Min-Gi Kim, Won-Jin Kim, Sung-Hoon Park
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/16/1/108
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive temperature coefficient (PTC) compromises accuracy. In this study, we present a novel hybrid composite combining carbon nanotubes (CNTs) with NTC properties and carbon black (CB) with PTC properties to achieve a near-zero temperature coefficient of resistance (TCR) at an optimal ratio. This innovation enhances the safety and reliability of carbon-based polymer composites for wearable heating applications. Furthermore, a thermochromic pigment layer is integrated into the hybrid composite, enabling visual temperature indication across three distinct zones. This bilayer structure not only addresses the TCR challenge but also provides real-time, user-friendly temperature monitoring. The resulting composite demonstrates consistent performance and high precision under diverse heating conditions, making it ideal for wearable thermotherapy pads. This study highlights a significant advancement in developing multifunctional, temperature-responsive materials, offering a promising solution for safer and more controllable wearable devices.
ISSN:2072-666X