A new ordered compactification

A new Wallman-type ordered compactification γ∘X is constructed using maximal CZ-filters (which have filter bases obtained from increasing and decreasing zero sets) as the underlying set. A necessary and sufficient condition is given for γ∘X to coincide with the Nachbin compactification β∘X; in parti...

Full description

Saved in:
Bibliographic Details
Main Authors: D. C. Kent, T. A. Richmond
Format: Article
Language:English
Published: Wiley 1993-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171293000146
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new Wallman-type ordered compactification γ∘X is constructed using maximal CZ-filters (which have filter bases obtained from increasing and decreasing zero sets) as the underlying set. A necessary and sufficient condition is given for γ∘X to coincide with the Nachbin compactification β∘X; in particular γ∘X=β∘X whenever X has the discrete order. The Wallman ordered compactification ω∘X equals γ∘X whenever X is a subspace of Rn. It is shown that γ∘X is always T1, but can fail to be T1-ordered or T2.
ISSN:0161-1712
1687-0425