Torsion Wave Solutions in Yang-Mielke Theory of Gravity

The approach of metric-affine gravity initially distinguishes it from Einstein’s general relativity. Using an independent affine connection produces a theory with 10 + 64 unknowns. We write down the Yang-Mills action for the affine connection and produce the Yang-Mills equation and the so-called com...

Full description

Saved in:
Bibliographic Details
Main Authors: Vedad Pasic, Elvis Barakovic
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2015/239076
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The approach of metric-affine gravity initially distinguishes it from Einstein’s general relativity. Using an independent affine connection produces a theory with 10 + 64 unknowns. We write down the Yang-Mills action for the affine connection and produce the Yang-Mills equation and the so-called complementary Yang-Mills equation by independently varying with respect to the connection and the metric, respectively. We call this theory the Yang-Mielke theory of gravity. We construct explicit spacetimes with pp-metric and purely axial torsion and show that they represent a solution of Yang-Mills theory. Finally we compare these spacetimes to existing solutions of metric-affine gravity and present future research possibilities.
ISSN:1687-7357
1687-7365