Local versus nonlocal barycentric interactions in 1D agent dynamics
The mean-field dynamics of a collection of stochastic agents evolving under local and nonlocal interactions in one dimension is studied via analytically solvable models. The nonlocal interactions between agents result from $(a)$ a finite extension of the agents interaction range and $(b)$ a barycent...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2013-09-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2014.11.303 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mean-field dynamics of a collection of stochastic agents evolving under local and nonlocal interactions in one dimension is studied via analytically solvable models. The nonlocal interactions between agents result from $(a)$ a finite extension of the agents interaction range and $(b)$ a barycentric modulation of the interaction strength. Our modeling framework is based on a discrete two-velocity Boltzmann dynamics which can be analytically discussed. Depending on the span and the modulation of the interaction range, we analytically observe a transition from a purely diffusive regime without definite pattern to a flocking evolution represented by a solitary wave traveling with constant velocity. |
---|---|
ISSN: | 1551-0018 |