A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics
Rehabilitation robotics has become a widely accepted method to deal with the training of people with motor dysfunction. In robotics medium training, shoulder repeated exercise training has been proven beneficial for improving motion ability of human limbs. An important and difficult paradigm for mot...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Applied Bionics and Biomechanics |
Online Access: | http://dx.doi.org/10.1155/2018/2719631 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832563290051444736 |
---|---|
author | Song Zhibin Ma Tianyu Nie Chao Niu Yijun |
author_facet | Song Zhibin Ma Tianyu Nie Chao Niu Yijun |
author_sort | Song Zhibin |
collection | DOAJ |
description | Rehabilitation robotics has become a widely accepted method to deal with the training of people with motor dysfunction. In robotics medium training, shoulder repeated exercise training has been proven beneficial for improving motion ability of human limbs. An important and difficult paradigm for motor function rehabilitation training is the movement rhythm on the shoulder, which is not a single joint but complex and ingenious combination of bones, muscles, ligaments, and tendons. The most robots for rehabilitation were designed previously considering simplified biomechanical models only, which led to misalignment between robots and human shoulder. Current biomechanical models were merely developed for rehabilitation robotics design. This paper proposes a new hybrid spatial model based on joint geometry constraints to describe the movement of the shoulder skeletal system and establish the position analysis equation of the model by a homogeneous coordinate transformation matrix and vector method, which can be used to calculate the kinematics of human-robot integrated system. The shoulder rhythm, the most remarkable particularity in shoulder complex kinematics and important reference for shoulder training strategy using robotics, is described and analyzed via the proposed skeleton model by three independent variables in this paper. This method greatly simplifies the complexity of the shoulder movement description and provides an important reference for the training strategy making of upper limb rehabilitation via robotics. |
format | Article |
id | doaj-art-5426dadca9ef41028871033961da5240 |
institution | Kabale University |
issn | 1176-2322 1754-2103 |
language | English |
publishDate | 2018-01-01 |
publisher | Wiley |
record_format | Article |
series | Applied Bionics and Biomechanics |
spelling | doaj-art-5426dadca9ef41028871033961da52402025-02-03T01:20:30ZengWileyApplied Bionics and Biomechanics1176-23221754-21032018-01-01201810.1155/2018/27196312719631A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation RoboticsSong Zhibin0Ma Tianyu1Nie Chao2Niu Yijun3Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, ChinaKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, ChinaKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, ChinaKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, ChinaRehabilitation robotics has become a widely accepted method to deal with the training of people with motor dysfunction. In robotics medium training, shoulder repeated exercise training has been proven beneficial for improving motion ability of human limbs. An important and difficult paradigm for motor function rehabilitation training is the movement rhythm on the shoulder, which is not a single joint but complex and ingenious combination of bones, muscles, ligaments, and tendons. The most robots for rehabilitation were designed previously considering simplified biomechanical models only, which led to misalignment between robots and human shoulder. Current biomechanical models were merely developed for rehabilitation robotics design. This paper proposes a new hybrid spatial model based on joint geometry constraints to describe the movement of the shoulder skeletal system and establish the position analysis equation of the model by a homogeneous coordinate transformation matrix and vector method, which can be used to calculate the kinematics of human-robot integrated system. The shoulder rhythm, the most remarkable particularity in shoulder complex kinematics and important reference for shoulder training strategy using robotics, is described and analyzed via the proposed skeleton model by three independent variables in this paper. This method greatly simplifies the complexity of the shoulder movement description and provides an important reference for the training strategy making of upper limb rehabilitation via robotics.http://dx.doi.org/10.1155/2018/2719631 |
spellingShingle | Song Zhibin Ma Tianyu Nie Chao Niu Yijun A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics Applied Bionics and Biomechanics |
title | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_full | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_fullStr | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_full_unstemmed | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_short | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_sort | new skeleton model and the motion rhythm analysis for human shoulder complex oriented to rehabilitation robotics |
url | http://dx.doi.org/10.1155/2018/2719631 |
work_keys_str_mv | AT songzhibin anewskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT matianyu anewskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT niechao anewskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT niuyijun anewskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT songzhibin newskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT matianyu newskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT niechao newskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT niuyijun newskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics |