Investigation on the Development, Stabilization and Impact of Thermally Induced Oxygen Vacancies on the Chemoresistive Sensing Properties of MOX
Gas sensors based on metal oxide (MOX) semiconductors doped with oxygen vacancies (VO) have many advantages over stoichiometric MOX, such as higher surface reactivity and lower operating temperature. However, preparing reduced MOX is challenging, and the impact of different VO types and concentratio...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-03-01
|
| Series: | Proceedings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2504-3900/97/1/88 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Gas sensors based on metal oxide (MOX) semiconductors doped with oxygen vacancies (VO) have many advantages over stoichiometric MOX, such as higher surface reactivity and lower operating temperature. However, preparing reduced MOX is challenging, and the impact of different VO types and concentration on sensing performance is still unclear. In this work, we developed a tailored reducing thermal treatment for creating controlled VO in MOX. The effect of the length and temperature of the treatment was investigated using several characterization methods. Finally, measurements were performed to evaluate the impact of VO type and concentration on reduced MOX sensing performance. |
|---|---|
| ISSN: | 2504-3900 |