Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities

Hydrogen peroxide treatment and the phenylpropanoid pathway precursors feeding affected the antioxidant capacity of quinoa sprouts. Compared to the control, total phenolics content was significantly increased by treatment of control sprouts with 50 mM and 200 mM H2O2—an elevation of about 24% and 28...

Full description

Saved in:
Bibliographic Details
Main Author: Michał Świeca
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Chemistry
Online Access:http://dx.doi.org/10.1155/2016/1936516
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562046774804480
author Michał Świeca
author_facet Michał Świeca
author_sort Michał Świeca
collection DOAJ
description Hydrogen peroxide treatment and the phenylpropanoid pathway precursors feeding affected the antioxidant capacity of quinoa sprouts. Compared to the control, total phenolics content was significantly increased by treatment of control sprouts with 50 mM and 200 mM H2O2—an elevation of about 24% and 28%, respectively. The highest increase of flavonoids content was found for the sprouts treated with 200 mM H2O2 obtained from seeds fed with shikimic acid. All the studied modifications increased the antioxidant potential of sprouts (at least by 50% compared to control). The highest reducing power was found for the sprouts treated with 200 mM H2O2 obtained by phenylalanine feeding (5.03 mg TE/g DW) and those obtained from the seeds fed with tyrosine (5.26 mg TE/g DW). The activities of L-tyrosine (TAL) and L-phenylalanine (PAL) ammonia-lyases were strongly affected by germination time as well as the applied modification of sprouting. On the 3rd day the highest PAL activity was determined for both untreated and induced with 50 mM H2O2 sprouts obtained by phenylalanine feeding. H2O2 induced TAL activity; the highest TAL activity was determined for 3-day-old sprouts induced with 200 mM H2O2 obtained from seeds fed with phenylalanine.
format Article
id doaj-art-53615e62c63844309e343c84fb73d35c
institution Kabale University
issn 2090-9063
2090-9071
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series Journal of Chemistry
spelling doaj-art-53615e62c63844309e343c84fb73d35c2025-02-03T01:23:31ZengWileyJournal of Chemistry2090-90632090-90712016-01-01201610.1155/2016/19365161936516Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases ActivitiesMichał Świeca0Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Street 8, 20-704 Lublin, PolandHydrogen peroxide treatment and the phenylpropanoid pathway precursors feeding affected the antioxidant capacity of quinoa sprouts. Compared to the control, total phenolics content was significantly increased by treatment of control sprouts with 50 mM and 200 mM H2O2—an elevation of about 24% and 28%, respectively. The highest increase of flavonoids content was found for the sprouts treated with 200 mM H2O2 obtained from seeds fed with shikimic acid. All the studied modifications increased the antioxidant potential of sprouts (at least by 50% compared to control). The highest reducing power was found for the sprouts treated with 200 mM H2O2 obtained by phenylalanine feeding (5.03 mg TE/g DW) and those obtained from the seeds fed with tyrosine (5.26 mg TE/g DW). The activities of L-tyrosine (TAL) and L-phenylalanine (PAL) ammonia-lyases were strongly affected by germination time as well as the applied modification of sprouting. On the 3rd day the highest PAL activity was determined for both untreated and induced with 50 mM H2O2 sprouts obtained by phenylalanine feeding. H2O2 induced TAL activity; the highest TAL activity was determined for 3-day-old sprouts induced with 200 mM H2O2 obtained from seeds fed with phenylalanine.http://dx.doi.org/10.1155/2016/1936516
spellingShingle Michał Świeca
Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities
Journal of Chemistry
title Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities
title_full Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities
title_fullStr Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities
title_full_unstemmed Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities
title_short Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities
title_sort hydrogen peroxide treatment and the phenylpropanoid pathway precursors feeding improve phenolics and antioxidant capacity of quinoa sprouts via an induction of l tyrosine and l phenylalanine ammonia lyases activities
url http://dx.doi.org/10.1155/2016/1936516
work_keys_str_mv AT michałswieca hydrogenperoxidetreatmentandthephenylpropanoidpathwayprecursorsfeedingimprovephenolicsandantioxidantcapacityofquinoasproutsviaaninductionofltyrosineandlphenylalanineammonialyasesactivities