Unital Compact Homomorphisms between Extended Analytic Lipschitz Algebras

Let 𝑋 and 𝐾 be compact plane sets with 𝐾⊆𝑋. We define 𝐴(𝑋,𝐾)={𝑓∈𝐶(𝑋)∶𝑓|𝐾∈𝐴(𝐾)}, where 𝐴(𝐾)={𝑔∈𝐶(𝑋)∶𝑔 is analytic on int(𝐾)}. For 𝛼∈(0,1], we define Lip(𝑋,𝐾,𝛼)={𝑓∈𝐶(𝑋)∶𝑝𝛼,𝐾(𝑓)=sup{|𝑓(𝑧)−𝑓(𝑤)|/|𝑧−𝑤|𝛼∶𝑧,𝑤∈𝐾,𝑧≠𝑤}<∞} and Lip𝐴(𝑋,𝐾,𝛼)=𝐴(𝑋,𝐾)∩Lip(𝑋,𝐾,𝛼). It is known that Lip𝐴(𝑋,𝐾,𝛼) is a natural Banach f...

Full description

Saved in:
Bibliographic Details
Main Authors: Davood Alimohammadi, Maliheh Mayghani
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/146758
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556518055084032
author Davood Alimohammadi
Maliheh Mayghani
author_facet Davood Alimohammadi
Maliheh Mayghani
author_sort Davood Alimohammadi
collection DOAJ
description Let 𝑋 and 𝐾 be compact plane sets with 𝐾⊆𝑋. We define 𝐴(𝑋,𝐾)={𝑓∈𝐶(𝑋)∶𝑓|𝐾∈𝐴(𝐾)}, where 𝐴(𝐾)={𝑔∈𝐶(𝑋)∶𝑔 is analytic on int(𝐾)}. For 𝛼∈(0,1], we define Lip(𝑋,𝐾,𝛼)={𝑓∈𝐶(𝑋)∶𝑝𝛼,𝐾(𝑓)=sup{|𝑓(𝑧)−𝑓(𝑤)|/|𝑧−𝑤|𝛼∶𝑧,𝑤∈𝐾,𝑧≠𝑤}<∞} and Lip𝐴(𝑋,𝐾,𝛼)=𝐴(𝑋,𝐾)∩Lip(𝑋,𝐾,𝛼). It is known that Lip𝐴(𝑋,𝐾,𝛼) is a natural Banach function algebra on 𝑋 under the norm ||𝑓||Lip(𝑋,𝐾,𝛼)=||𝑓||𝑋+𝑝𝛼,𝐾(𝑓), where ||𝑓||𝑋=sup{|𝑓(𝑥)|∶𝑥∈𝑋}. These algebras are called extended analytic Lipschitz algebras. In this paper we study unital homomorphisms from natural Banach function subalgebras of Lip𝐴(𝑋1,𝐾1,𝛼1) to natural Banach function subalgebras of Lip𝐴(𝑋2,𝐾2,𝛼2) and investigate necessary and sufficient conditions for which these homomorphisms are compact. We also determine the spectrum of unital compact endomorphisms of Lip𝐴(𝑋,𝐾,𝛼).
format Article
id doaj-art-5332c0e33db24ca19460003e088ecbb3
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-5332c0e33db24ca19460003e088ecbb32025-02-03T05:45:10ZengWileyAbstract and Applied Analysis1085-33751687-04092011-01-01201110.1155/2011/146758146758Unital Compact Homomorphisms between Extended Analytic Lipschitz AlgebrasDavood Alimohammadi0Maliheh Mayghani1Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, IranDepartment of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, IranLet 𝑋 and 𝐾 be compact plane sets with 𝐾⊆𝑋. We define 𝐴(𝑋,𝐾)={𝑓∈𝐶(𝑋)∶𝑓|𝐾∈𝐴(𝐾)}, where 𝐴(𝐾)={𝑔∈𝐶(𝑋)∶𝑔 is analytic on int(𝐾)}. For 𝛼∈(0,1], we define Lip(𝑋,𝐾,𝛼)={𝑓∈𝐶(𝑋)∶𝑝𝛼,𝐾(𝑓)=sup{|𝑓(𝑧)−𝑓(𝑤)|/|𝑧−𝑤|𝛼∶𝑧,𝑤∈𝐾,𝑧≠𝑤}<∞} and Lip𝐴(𝑋,𝐾,𝛼)=𝐴(𝑋,𝐾)∩Lip(𝑋,𝐾,𝛼). It is known that Lip𝐴(𝑋,𝐾,𝛼) is a natural Banach function algebra on 𝑋 under the norm ||𝑓||Lip(𝑋,𝐾,𝛼)=||𝑓||𝑋+𝑝𝛼,𝐾(𝑓), where ||𝑓||𝑋=sup{|𝑓(𝑥)|∶𝑥∈𝑋}. These algebras are called extended analytic Lipschitz algebras. In this paper we study unital homomorphisms from natural Banach function subalgebras of Lip𝐴(𝑋1,𝐾1,𝛼1) to natural Banach function subalgebras of Lip𝐴(𝑋2,𝐾2,𝛼2) and investigate necessary and sufficient conditions for which these homomorphisms are compact. We also determine the spectrum of unital compact endomorphisms of Lip𝐴(𝑋,𝐾,𝛼).http://dx.doi.org/10.1155/2011/146758
spellingShingle Davood Alimohammadi
Maliheh Mayghani
Unital Compact Homomorphisms between Extended Analytic Lipschitz Algebras
Abstract and Applied Analysis
title Unital Compact Homomorphisms between Extended Analytic Lipschitz Algebras
title_full Unital Compact Homomorphisms between Extended Analytic Lipschitz Algebras
title_fullStr Unital Compact Homomorphisms between Extended Analytic Lipschitz Algebras
title_full_unstemmed Unital Compact Homomorphisms between Extended Analytic Lipschitz Algebras
title_short Unital Compact Homomorphisms between Extended Analytic Lipschitz Algebras
title_sort unital compact homomorphisms between extended analytic lipschitz algebras
url http://dx.doi.org/10.1155/2011/146758
work_keys_str_mv AT davoodalimohammadi unitalcompacthomomorphismsbetweenextendedanalyticlipschitzalgebras
AT malihehmayghani unitalcompacthomomorphismsbetweenextendedanalyticlipschitzalgebras