Unital Compact Homomorphisms between Extended Analytic Lipschitz Algebras
Let 𝑋 and 𝐾 be compact plane sets with 𝐾⊆𝑋. We define 𝐴(𝑋,𝐾)={𝑓∈𝐶(𝑋)∶𝑓|𝐾∈𝐴(𝐾)}, where 𝐴(𝐾)={𝑔∈𝐶(𝑋)∶𝑔 is analytic on int(𝐾)}. For 𝛼∈(0,1], we define Lip(𝑋,𝐾,𝛼)={𝑓∈𝐶(𝑋)∶𝑝𝛼,𝐾(𝑓)=sup{|𝑓(𝑧)−𝑓(𝑤)|/|𝑧−𝑤|𝛼∶𝑧,𝑤∈𝐾,𝑧≠𝑤}<∞} and Lip𝐴(𝑋,𝐾,𝛼)=𝐴(𝑋,𝐾)∩Lip(𝑋,𝐾,𝛼). It is known that Lip𝐴(𝑋,𝐾,𝛼) is a natural Banach f...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2011/146758 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let 𝑋 and 𝐾 be compact plane sets with 𝐾⊆𝑋. We define 𝐴(𝑋,𝐾)={𝑓∈𝐶(𝑋)∶𝑓|𝐾∈𝐴(𝐾)}, where 𝐴(𝐾)={𝑔∈𝐶(𝑋)∶𝑔 is analytic on int(𝐾)}. For 𝛼∈(0,1], we define Lip(𝑋,𝐾,𝛼)={𝑓∈𝐶(𝑋)∶𝑝𝛼,𝐾(𝑓)=sup{|𝑓(𝑧)−𝑓(𝑤)|/|𝑧−𝑤|𝛼∶𝑧,𝑤∈𝐾,𝑧≠𝑤}<∞} and Lip𝐴(𝑋,𝐾,𝛼)=𝐴(𝑋,𝐾)∩Lip(𝑋,𝐾,𝛼). It is known that Lip𝐴(𝑋,𝐾,𝛼) is a natural Banach function algebra on 𝑋 under the norm ||𝑓||Lip(𝑋,𝐾,𝛼)=||𝑓||𝑋+𝑝𝛼,𝐾(𝑓), where ||𝑓||𝑋=sup{|𝑓(𝑥)|∶𝑥∈𝑋}. These algebras are called extended analytic Lipschitz algebras. In this paper we study unital homomorphisms from natural Banach function subalgebras of Lip𝐴(𝑋1,𝐾1,𝛼1) to natural Banach function subalgebras of Lip𝐴(𝑋2,𝐾2,𝛼2) and investigate necessary and sufficient conditions for which these homomorphisms are compact. We also determine the spectrum of unital compact endomorphisms of Lip𝐴(𝑋,𝐾,𝛼). |
---|---|
ISSN: | 1085-3375 1687-0409 |