A Secure Privacy-Preserving Data Aggregation Model in Wearable Wireless Sensor Networks

With the rapid development and widespread use of wearable wireless sensors, data aggregation technique becomes one of the most important research areas. However, the sensitive data collected by sensor nodes may be leaked at the intermediate aggregator nodes. So, privacy preservation is becoming an i...

Full description

Saved in:
Bibliographic Details
Main Authors: Changlun Zhang, Chao Li, Jian Zhang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2015/104286
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the rapid development and widespread use of wearable wireless sensors, data aggregation technique becomes one of the most important research areas. However, the sensitive data collected by sensor nodes may be leaked at the intermediate aggregator nodes. So, privacy preservation is becoming an increasingly important issue in security data aggregation. In this paper, we propose a security privacy-preserving data aggregation model, which adopts a mixed data aggregation structure. Data integrity is verified both at cluster head and at base station. Some nodes adopt slicing technology to avoid the leak of data at the cluster head in inner-cluster. Furthermore, a mechanism is given to locate the compromised nodes. The analysis shows that the model is robust to many attacks and has a lower communication overhead.
ISSN:2090-0147
2090-0155