An Algorithm for Higher Order Hopf Normal Forms

Normal form theory is important for studying the qualitative behavior of nonlinear oscillators. In some cases, higher order normal forms are required to understand the dynamic behavior near an equilibrium or a periodic orbit. However, the computation of high-order normal forms is usually quite compl...

Full description

Saved in:
Bibliographic Details
Main Authors: A.Y.T. Leung, T. Ge
Format: Article
Language:English
Published: Wiley 1995-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.3233/SAV-1995-2405
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Normal form theory is important for studying the qualitative behavior of nonlinear oscillators. In some cases, higher order normal forms are required to understand the dynamic behavior near an equilibrium or a periodic orbit. However, the computation of high-order normal forms is usually quite complicated. This article provides an explicit formula for the normalization of nonlinear differential equations. The higher order normal form is given explicitly. Illustrative examples include a cubic system, a quadratic system and a Duffing–Van der Pol system. We use exact arithmetic and find that the undamped Duffing equation can be represented by an exact polynomial differential amplitude equation in a finite number of terms.
ISSN:1070-9622
1875-9203