An Alternative Sensitivity Approach for Longitudinal Analysis with Dropout

In any longitudinal study, a dropout before the final timepoint can rarely be avoided. The chosen dropout model is commonly one of these types: Missing Completely at Random (MCAR), Missing at Random (MAR), Missing Not at Random (MNAR), and Shared Parameter (SP). In this paper we estimate the paramet...

Full description

Saved in:
Bibliographic Details
Main Authors: Amal Almohisen, Robin Henderson, Arwa M. Alshingiti
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Probability and Statistics
Online Access:http://dx.doi.org/10.1155/2019/1019303
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In any longitudinal study, a dropout before the final timepoint can rarely be avoided. The chosen dropout model is commonly one of these types: Missing Completely at Random (MCAR), Missing at Random (MAR), Missing Not at Random (MNAR), and Shared Parameter (SP). In this paper we estimate the parameters of the longitudinal model for simulated data and real data using the Linear Mixed Effect (LME) method. We investigate the consequences of misspecifying the missingness mechanism by deriving the so-called least false values. These are the values the parameter estimates converge to, when the assumptions may be wrong. The knowledge of the least false values allows us to conduct a sensitivity analysis, which is illustrated. This method provides an alternative to a local misspecification sensitivity procedure, which has been developed for likelihood-based analysis. We compare the results obtained by the method proposed with the results found by using the local misspecification method. We apply the local misspecification and least false methods to estimate the bias and sensitivity of parameter estimates for a clinical trial example.
ISSN:1687-952X
1687-9538