A recurrence model for non-puerperal mastitis patients based on machine learning

Saved in:
Bibliographic Details
Main Authors: Gaosha Li, Qian Yu, Feng Dong, Zhaoxia Wu, Xijing Fan, Lingling Zhang, Ying Yu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737717/?tool=EBI
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832592712336932864
author Gaosha Li
Qian Yu
Feng Dong
Zhaoxia Wu
Xijing Fan
Lingling Zhang
Ying Yu
author_facet Gaosha Li
Qian Yu
Feng Dong
Zhaoxia Wu
Xijing Fan
Lingling Zhang
Ying Yu
author_sort Gaosha Li
collection DOAJ
format Article
id doaj-art-52114cb02b134654a9c82f8aed898903
institution Kabale University
issn 1932-6203
language English
publishDate 2025-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-52114cb02b134654a9c82f8aed8989032025-01-21T05:31:36ZengPublic Library of Science (PLoS)PLoS ONE1932-62032025-01-01201A recurrence model for non-puerperal mastitis patients based on machine learningGaosha LiQian YuFeng DongZhaoxia WuXijing FanLingling ZhangYing Yuhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737717/?tool=EBI
spellingShingle Gaosha Li
Qian Yu
Feng Dong
Zhaoxia Wu
Xijing Fan
Lingling Zhang
Ying Yu
A recurrence model for non-puerperal mastitis patients based on machine learning
PLoS ONE
title A recurrence model for non-puerperal mastitis patients based on machine learning
title_full A recurrence model for non-puerperal mastitis patients based on machine learning
title_fullStr A recurrence model for non-puerperal mastitis patients based on machine learning
title_full_unstemmed A recurrence model for non-puerperal mastitis patients based on machine learning
title_short A recurrence model for non-puerperal mastitis patients based on machine learning
title_sort recurrence model for non puerperal mastitis patients based on machine learning
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737717/?tool=EBI
work_keys_str_mv AT gaoshali arecurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT qianyu arecurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT fengdong arecurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT zhaoxiawu arecurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT xijingfan arecurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT linglingzhang arecurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT yingyu arecurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT gaoshali recurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT qianyu recurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT fengdong recurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT zhaoxiawu recurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT xijingfan recurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT linglingzhang recurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning
AT yingyu recurrencemodelfornonpuerperalmastitispatientsbasedonmachinelearning