An Improved Version of Residual Power Series Method for Space-Time Fractional Problems

The task of present research is to establish an enhanced version of residual power series (RPS) technique for the approximate solutions of linear and nonlinear space-time fractional problems with Dirichlet boundary conditions by introducing new parameter λ. The parameter λ allows us to establish the...

Full description

Saved in:
Bibliographic Details
Main Authors: Mine Aylin Bayrak, Ali Demir, Ebru Ozbilge
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2022/6174688
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The task of present research is to establish an enhanced version of residual power series (RPS) technique for the approximate solutions of linear and nonlinear space-time fractional problems with Dirichlet boundary conditions by introducing new parameter λ. The parameter λ allows us to establish the best numerical solutions for space-time fractional differential equations (STFDE). Since each problem has different Dirichlet boundary conditions, the best choice of the parameter λ depends on the problem. This is the major contribution of this research. The illustrated examples also show that the best approximate solutions of various problems are constructed for distinct values of parameter λ. Moreover, the efficiency and reliability of this technique are verified by the numerical examples.
ISSN:1687-9139