Prediction of the RFID Identification Rate Based on the Neighborhood Rough Set and Random Forest for Robot Application Scenarios
With the rapid development of Internet of Things technology, RFID technology has been widely used in various fields. In order to optimize the RFID system hardware deployment strategy and improve the deployment efficiency, the prediction of the RFID system identification rate has become a new challen...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/8831963 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832560310834167808 |
---|---|
author | Hong-Gang Wang Shan-Shan Wang Ruo-Yu Pan Sheng-Li Pang Xiao-Song Liu Zhi-Yong Luo Sheng-Pei Zhou |
author_facet | Hong-Gang Wang Shan-Shan Wang Ruo-Yu Pan Sheng-Li Pang Xiao-Song Liu Zhi-Yong Luo Sheng-Pei Zhou |
author_sort | Hong-Gang Wang |
collection | DOAJ |
description | With the rapid development of Internet of Things technology, RFID technology has been widely used in various fields. In order to optimize the RFID system hardware deployment strategy and improve the deployment efficiency, the prediction of the RFID system identification rate has become a new challenge. In this paper, a neighborhood rough set and random forest (NRS-RF) combination model is proposed to predict the identification rate of an RFID system. Firstly, the initial influencing factors of the RFID system identification rate are reduced using neighborhood rough set theory combined with the principle of heuristic attribute reduction of neighborhood weighted dependency, thus obtaining a kernel factor subset. Secondly, a random forest prediction model is established based on the kernel factor subset, and a confusion matrix is established using out-of-bag (OOB) data to evaluate the prediction results. The test is conducted under the constructed RFID experimental environment, whose results showed that the model can predict the identification rate of the RFID system in a fast and efficient way, and the classification accuracy can reach 90.5%. It can effectively guide the hardware deployment and communication parameter protocol setting of the system and improve the system performance. Compared with BP neural network (BPNN) and other prediction models, NRS-RF has shorter prediction time and faster calculation speed. Finally, the validity of the proposed model was verified by the RFID intelligent archives management platform. |
format | Article |
id | doaj-art-517c7bcc849d416ab8f6b7b91bd6d1e6 |
institution | Kabale University |
issn | 1076-2787 1099-0526 |
language | English |
publishDate | 2020-01-01 |
publisher | Wiley |
record_format | Article |
series | Complexity |
spelling | doaj-art-517c7bcc849d416ab8f6b7b91bd6d1e62025-02-03T01:27:57ZengWileyComplexity1076-27871099-05262020-01-01202010.1155/2020/88319638831963Prediction of the RFID Identification Rate Based on the Neighborhood Rough Set and Random Forest for Robot Application ScenariosHong-Gang Wang0Shan-Shan Wang1Ruo-Yu Pan2Sheng-Li Pang3Xiao-Song Liu4Zhi-Yong Luo5Sheng-Pei Zhou6School of Communication and Information Engineering & School of Artificial Intelligence, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, ChinaSchool of Communication and Information Engineering & School of Artificial Intelligence, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, ChinaSchool of Communication and Information Engineering & School of Artificial Intelligence, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, ChinaSchool of Communication and Information Engineering & School of Artificial Intelligence, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, ChinaGuangdong Zhongke Zhenheng Information Technology Co. Ltd., Foshan, Guangdong 528225, ChinaSchool of Electronics and Communication Engineering, Sun Yat-Sen University, Guangzhou 510006, ChinaShenyang Institute of Automation (Guangzhou) Chinese Academy of Sciences, Guangzhou 511458, ChinaWith the rapid development of Internet of Things technology, RFID technology has been widely used in various fields. In order to optimize the RFID system hardware deployment strategy and improve the deployment efficiency, the prediction of the RFID system identification rate has become a new challenge. In this paper, a neighborhood rough set and random forest (NRS-RF) combination model is proposed to predict the identification rate of an RFID system. Firstly, the initial influencing factors of the RFID system identification rate are reduced using neighborhood rough set theory combined with the principle of heuristic attribute reduction of neighborhood weighted dependency, thus obtaining a kernel factor subset. Secondly, a random forest prediction model is established based on the kernel factor subset, and a confusion matrix is established using out-of-bag (OOB) data to evaluate the prediction results. The test is conducted under the constructed RFID experimental environment, whose results showed that the model can predict the identification rate of the RFID system in a fast and efficient way, and the classification accuracy can reach 90.5%. It can effectively guide the hardware deployment and communication parameter protocol setting of the system and improve the system performance. Compared with BP neural network (BPNN) and other prediction models, NRS-RF has shorter prediction time and faster calculation speed. Finally, the validity of the proposed model was verified by the RFID intelligent archives management platform.http://dx.doi.org/10.1155/2020/8831963 |
spellingShingle | Hong-Gang Wang Shan-Shan Wang Ruo-Yu Pan Sheng-Li Pang Xiao-Song Liu Zhi-Yong Luo Sheng-Pei Zhou Prediction of the RFID Identification Rate Based on the Neighborhood Rough Set and Random Forest for Robot Application Scenarios Complexity |
title | Prediction of the RFID Identification Rate Based on the Neighborhood Rough Set and Random Forest for Robot Application Scenarios |
title_full | Prediction of the RFID Identification Rate Based on the Neighborhood Rough Set and Random Forest for Robot Application Scenarios |
title_fullStr | Prediction of the RFID Identification Rate Based on the Neighborhood Rough Set and Random Forest for Robot Application Scenarios |
title_full_unstemmed | Prediction of the RFID Identification Rate Based on the Neighborhood Rough Set and Random Forest for Robot Application Scenarios |
title_short | Prediction of the RFID Identification Rate Based on the Neighborhood Rough Set and Random Forest for Robot Application Scenarios |
title_sort | prediction of the rfid identification rate based on the neighborhood rough set and random forest for robot application scenarios |
url | http://dx.doi.org/10.1155/2020/8831963 |
work_keys_str_mv | AT honggangwang predictionoftherfididentificationratebasedontheneighborhoodroughsetandrandomforestforrobotapplicationscenarios AT shanshanwang predictionoftherfididentificationratebasedontheneighborhoodroughsetandrandomforestforrobotapplicationscenarios AT ruoyupan predictionoftherfididentificationratebasedontheneighborhoodroughsetandrandomforestforrobotapplicationscenarios AT shenglipang predictionoftherfididentificationratebasedontheneighborhoodroughsetandrandomforestforrobotapplicationscenarios AT xiaosongliu predictionoftherfididentificationratebasedontheneighborhoodroughsetandrandomforestforrobotapplicationscenarios AT zhiyongluo predictionoftherfididentificationratebasedontheneighborhoodroughsetandrandomforestforrobotapplicationscenarios AT shengpeizhou predictionoftherfididentificationratebasedontheneighborhoodroughsetandrandomforestforrobotapplicationscenarios |