Black Hole Entropy from Indistinguishable Quantum Geometric Excitations

In loop quantum gravity the quantum geometry of a black hole horizon consists of discrete nonperturbative quantum geometric excitations (or punctures) labeled by spins, which are responsible for the quantum area of the horizon. If these punctures are compared to a gas of particles, then the spins as...

Full description

Saved in:
Bibliographic Details
Main Author: Abhishek Majhi
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2016/2903867
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In loop quantum gravity the quantum geometry of a black hole horizon consists of discrete nonperturbative quantum geometric excitations (or punctures) labeled by spins, which are responsible for the quantum area of the horizon. If these punctures are compared to a gas of particles, then the spins associated with the punctures can be viewed as single puncture area levels analogous to single particle energy levels. Consequently, if we assume these punctures to be indistinguishable, the microstate count for the horizon resembles that of Bose-Einstein counting formula for gas of particles. For the Bekenstein-Hawking area law to follow from the entropy calculation in the large area limit, the Barbero-Immirzi parameter (γ) approximately takes a constant value. As a by-product, we are able to speculate the state counting formula for the SU(2) quantum Chern-Simons theory coupled to indistinguishable sources in the weak coupling limit.
ISSN:1687-7357
1687-7365