Calcium coordination polymer containing dimethylphosphate ligands and exhibiting nucleating properties towards α and Β crystal polymorphs of isotactic polypropylene

Abstract The synthesis, structure and thermal properties of a one-dimensional coordination polymer based on calcium bis(dimethylphosphate) (CaDMP) are reported. The rod-like particles of CaDMP crystallized from water in a monoclinic space group P21/c, and contained Ca[O2P(OCH3)2]2 polymeric chains c...

Full description

Saved in:
Bibliographic Details
Main Authors: Maciej Dębowski, Mateusz Kullas, Krystyna Czaja, Beata Sacher-Majewska, Marcin Bączek, Maciej Dranka, Andrzej Ostrowski, Zbigniew Florjańczyk
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-99757-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The synthesis, structure and thermal properties of a one-dimensional coordination polymer based on calcium bis(dimethylphosphate) (CaDMP) are reported. The rod-like particles of CaDMP crystallized from water in a monoclinic space group P21/c, and contained Ca[O2P(OCH3)2]2 polymeric chains consisting of the octahedrally coordinated Ca2+ ions bridged by the tridentate dimethylphosphate ligands. The variable temperature powder X-ray diffraction measurements showed that this structure undergoes anisotropic thermal expansion upon heating, with no polymorphic transitions occurring up to 190 °C. Thermolysis of CaDMP began around 260 °C leading to the formation of calcium condensed phosphates and volatile oxophosphorus species. A detailed differential scanning calorimetry (DSC) analysis, combined with a fitting of the experimental data to the Avrami or Liu–Mo kinetic models, revealed that CaDMP accelerates isothermal and non-isothermal crystallization of isotactic polypropylene (iPP). DSC and wide-angle X-ray scattering measurements confirmed the presence of α-iPP and β-iPP crystal domains in the systems loaded with CaDMP particles. The crystallographic analysis indicated that β-iPP polymorph formed via epitaxial crystallization on the surface of CaDMP crystals. Mechanical tests proved that the CaDMP-containing composites exhibited better ductility and impact strength than neat iPP.
ISSN:2045-2322