Electrochemical Characterization and Simulation of Ion Transport in Anion Exchange Membranes for Water Treatment Applications

This study presents a comprehensive electrochemical characterization and simulation of anion exchange membranes (AEMs) for water treatment applications, focusing on ion transport behavior. Experimental techniques, including chronopotentiometry, current–voltage (I–V) curve measurements, and electroch...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiaolin Lang, Yang Liu, Gaojuan Guo, Yang Zhang
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/15/4/123
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a comprehensive electrochemical characterization and simulation of anion exchange membranes (AEMs) for water treatment applications, focusing on ion transport behavior. Experimental techniques, including chronopotentiometry, current–voltage (I–V) curve measurements, and electrochemical impedance spectroscopy (EIS), were employed to investigate the kinetics and dynamics of ion transport at the membrane interface. The results were validated and further explored through finite element method (FEM) simulations using COMSOL Multiphysics. The study revealed key insights into the role of membrane resistance, ion diffusion, and capacitive effects on overall membrane performance. Parametric analyses of electrolyte layer thickness, bulk solution concentration, and membrane porosity provided guidelines for optimizing membrane design. The findings highlight the importance of considering these factors in enhancing the efficiency and applicability of AEMs in water treatment processes. Future work will focus on refining simulation models and exploring advanced materials to further improve membrane performance.
ISSN:2077-0375