Forward Curvatures on Time Scales

We also introduce forward curvature of a curve and give some formulas to calculate forward curvature of a curve on time scales which may be an arbitrary closed subsets of the set of all real numbers. We also introduce the length of a curve parametrized by a time scale parameter in ℝ3.

Saved in:
Bibliographic Details
Main Authors: M. S. Seyyidoglu, Y. Tunçer, D. Uçar, M. K. Berktaş, V. F. Hatipoğlu
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/805948
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546130145050624
author M. S. Seyyidoglu
Y. Tunçer
D. Uçar
M. K. Berktaş
V. F. Hatipoğlu
author_facet M. S. Seyyidoglu
Y. Tunçer
D. Uçar
M. K. Berktaş
V. F. Hatipoğlu
author_sort M. S. Seyyidoglu
collection DOAJ
description We also introduce forward curvature of a curve and give some formulas to calculate forward curvature of a curve on time scales which may be an arbitrary closed subsets of the set of all real numbers. We also introduce the length of a curve parametrized by a time scale parameter in ℝ3.
format Article
id doaj-art-509fa8d23b004c4ba96497e6e8ac6032
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-509fa8d23b004c4ba96497e6e8ac60322025-02-03T07:23:51ZengWileyAbstract and Applied Analysis1085-33751687-04092011-01-01201110.1155/2011/805948805948Forward Curvatures on Time ScalesM. S. Seyyidoglu0Y. Tunçer1D. Uçar2M. K. Berktaş3V. F. Hatipoğlu4Department of Mathematics, Faculty of Arts and Sciences, Usak University, 1 Eylul Campus, 64200, Usak, TurkeyDepartment of Mathematics, Faculty of Arts and Sciences, Usak University, 1 Eylul Campus, 64200, Usak, TurkeyDepartment of Mathematics, Faculty of Arts and Sciences, Usak University, 1 Eylul Campus, 64200, Usak, TurkeyDepartment of Mathematics, Faculty of Arts and Sciences, Usak University, 1 Eylul Campus, 64200, Usak, TurkeyDepartment of Mathematics, Faculty of Arts and Sciences, Usak University, 1 Eylul Campus, 64200, Usak, TurkeyWe also introduce forward curvature of a curve and give some formulas to calculate forward curvature of a curve on time scales which may be an arbitrary closed subsets of the set of all real numbers. We also introduce the length of a curve parametrized by a time scale parameter in ℝ3.http://dx.doi.org/10.1155/2011/805948
spellingShingle M. S. Seyyidoglu
Y. Tunçer
D. Uçar
M. K. Berktaş
V. F. Hatipoğlu
Forward Curvatures on Time Scales
Abstract and Applied Analysis
title Forward Curvatures on Time Scales
title_full Forward Curvatures on Time Scales
title_fullStr Forward Curvatures on Time Scales
title_full_unstemmed Forward Curvatures on Time Scales
title_short Forward Curvatures on Time Scales
title_sort forward curvatures on time scales
url http://dx.doi.org/10.1155/2011/805948
work_keys_str_mv AT msseyyidoglu forwardcurvaturesontimescales
AT ytuncer forwardcurvaturesontimescales
AT ducar forwardcurvaturesontimescales
AT mkberktas forwardcurvaturesontimescales
AT vfhatipoglu forwardcurvaturesontimescales