Existence of Infinitely Many Distinct Solutions to the Quasirelativistic Hartree-Fock Equations

We establish existence of infinitely many distinct solutions to the semilinear elliptic Hartree-Fock equations for N-electron Coulomb systems with quasirelativistic kinetic energy −α−2Δxn+α−4−α−2 for the nth electron. Moreover, we prove existence of a ground state. The results are valid under the h...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Enstedt, M. Melgaard
Format: Article
Language:English
Published: Wiley 2009-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2009/651871
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We establish existence of infinitely many distinct solutions to the semilinear elliptic Hartree-Fock equations for N-electron Coulomb systems with quasirelativistic kinetic energy −α−2Δxn+α−4−α−2 for the nth electron. Moreover, we prove existence of a ground state. The results are valid under the hypotheses that the total charge Ztot of K nuclei is greater than N−1 and that Ztot is smaller than a critical charge Zc. The proofs are based on a new application of the Fang-Ghoussoub critical point approach to multiple solutions on a noncompact Riemannian manifold, in combination with density operator techniques.
ISSN:0161-1712
1687-0425