Modeling Simultaneous Multiple Fracturing Using the Combined Finite-Discrete Element Method

Simultaneous multiple fracturing is a key technology to facilitate the production of shale oil/gas. When multiple hydraulic fractures propagate simultaneously, there is an interaction effect among these propagating hydraulic fractures, known as the stress-shadow effect, which has a significant impac...

Full description

Saved in:
Bibliographic Details
Main Authors: Quansheng Liu, Lei Sun, Pingli Liu, Lei Chen
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2018/4252904
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Simultaneous multiple fracturing is a key technology to facilitate the production of shale oil/gas. When multiple hydraulic fractures propagate simultaneously, there is an interaction effect among these propagating hydraulic fractures, known as the stress-shadow effect, which has a significant impact on the fracture geometry. Understanding and controlling the propagation of simultaneous multiple hydraulic fractures and the interaction effects between multiple fractures are critical to optimizing oil/gas production. In this paper, the FDEM simulator and a fluid simulator are linked, named FDEM-Fluid, to handle hydromechanical-fracture coupling problems and investigate the simultaneous multiple hydraulic fracturing mechanism. The fractures propagation and the deformation of solid phase are solved by FDEM; meanwhile the fluid flow in the fractures is modeled using the principle of parallel-plate flow model. Several tests are carried out to validate the application of FDEM-Fluid in hydraulic fracturing simulation. Then, this FDEM-Fluid is used to investigate simultaneous multiple fractures treatment. Fractures repel each other when multiple fractures propagate from a single horizontal well, while the nearby fractures in different horizontal wells attract each other when multiple fractures propagate from multiple parallel horizontal wells. The in situ stress also has a significant impact on the fracture geometry.
ISSN:1468-8115
1468-8123