A Generalization of a Logarithmic Sobolev Inequality to the Hölder Class

In a recent work of the author, a parabolic extension of the elliptic Ogawa type inequality has been established. This inequality is originated from the Brézis-Gallouët-Wainger logarithmic type inequalities revealing Sobolev embeddings in the critical case. In this paper, we improve the parabolic v...

Full description

Saved in:
Bibliographic Details
Main Author: H. Ibrahim
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2012/148706
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a recent work of the author, a parabolic extension of the elliptic Ogawa type inequality has been established. This inequality is originated from the Brézis-Gallouët-Wainger logarithmic type inequalities revealing Sobolev embeddings in the critical case. In this paper, we improve the parabolic version of Ogawa inequality by allowing it to cover not only the class of functions from Sobolev spaces, but also the wider class of Hölder continuous functions.
ISSN:0972-6802
1758-4965