Metasurface-Refractive Hybrid Lens Modeling with Vector Field Physical Optics

Metasurfaces (MSs) have emerged as a promising technology for optical system design. When combined with traditional refractive optics, MS-refractive hybrid lenses can enhance imaging performance, reduce optical aberrations, and introduce new functionalities such as polarization control. However, mod...

Full description

Saved in:
Bibliographic Details
Main Authors: Ko-Han Shih, C. Kyle Renshaw
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/4/401
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metasurfaces (MSs) have emerged as a promising technology for optical system design. When combined with traditional refractive optics, MS-refractive hybrid lenses can enhance imaging performance, reduce optical aberrations, and introduce new functionalities such as polarization control. However, modeling these hybrid lenses requires advanced simulation techniques that usually go beyond conventional raytracing tools. This work presents a physical optics framework for modeling MS-refractive hybrid lenses. We introduce a ray-wave hybrid method that integrates multiple propagation techniques to account for vector wave propagation through various optical elements. At the center of the proposed framework is the Gaussian decomposition method for modeling beam propagation through refractive optics. Ray-path diffraction is automatically considered in this method, and complex input wavefront can be modeled as well. Several techniques are integrated to ensure accuracy in decomposing an incoming vector wave into Gaussian beamlets, such as adaptive consideration of local wavefront principal curvatures and best-fit beam width estimation from the local covariance matrix. To demonstrate the effectiveness of our method, we apply it to several hybrid lens designs, including polarization-sensitive MSs and aberration-correcting MSs integrated into complex optical systems.
ISSN:2304-6732