Stability Optimization of a Disc Brake System with Hybrid Uncertainties for Squeal Reduction

A hybrid uncertain model is introduced to deal with the uncertainties existing in a disc brake system in this paper. By the hybrid uncertain model, the uncertain parameters of the brake with enough sampling data are treated as probabilistic variables, while the uncertain parameters with limited data...

Full description

Saved in:
Bibliographic Details
Main Authors: Hui Lü, Dejie Yu
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2016/3497468
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A hybrid uncertain model is introduced to deal with the uncertainties existing in a disc brake system in this paper. By the hybrid uncertain model, the uncertain parameters of the brake with enough sampling data are treated as probabilistic variables, while the uncertain parameters with limited data are treated as interval probabilistic variables whose distribution parameters are expressed as interval variables. Based on the hybrid uncertain model, the reliability-based design optimization (RBDO) of a disc brake with hybrid uncertainties is proposed to explore the optimal design for squeal reduction. In the optimization, the surrogate model of the real part of domain unstable eigenvalue of the brake system is established, and the upper bound of its expectation is adopted as the optimization objective. The lower bounds of the functions related to system stability, the mass, and the stiffness of design component are adopted as the optimization constraints. The combinational algorithm of Genetic Algorithm and Monte-Carlo method is employed to perform the optimization. The results of a numerical example demonstrate the effectiveness of the proposed optimization on improving system stability and reducing squeal propensity of a disc brake under hybrid uncertainties.
ISSN:1070-9622
1875-9203