Suppression of Specular Reflections by Metasurface with Engineered Nonuniform Distribution of Reflection Phase

We make preliminary investigations on a new approach to reducing radar cross section (RCS) of conducting objects. This approach employs novel planar metasurfaces characterizing nonuniform distribution of reflection phase. The operation principle of this approach and the design rule of the associated...

Full description

Saved in:
Bibliographic Details
Main Authors: Xin Mi Yang, Ge Lan Jiang, Xue Guan Liu, Cheng Xiang Weng
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2015/560403
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We make preliminary investigations on a new approach to reducing radar cross section (RCS) of conducting objects. This approach employs novel planar metasurfaces characterizing nonuniform distribution of reflection phase. The operation principle of this approach and the design rule of the associated metasurfaces are explained using a simplified theoretical model. We then present a design example of such metasurfaces, in which three-layer stacked square patches with variable sizes are utilized as the reflecting elements. The proposed RCS-reduction approach is verified by both numerical simulations and measurements on the example, under the assumption of normal plane wave incidence. It is observed that, in a fairly wide frequency band (from 3.6 to 5.5 GHz), the presented example is capable of suppressing the specular reflections of conducting plates significantly (by more than 7 dB) for two orthogonal incident polarizations.
ISSN:1687-5869
1687-5877