Bifurcation Analysis in a Delayed Diffusive Leslie-Gower Model
We investigate a modified delayed Leslie-Gower model under homogeneous Neumann boundary conditions. We give the stability analysis of the equilibria of the model and show the existence of Hopf bifurcation at the positive equilibrium under some conditions. Furthermore, we investigate the stability an...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2013-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2013/170501 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We investigate a modified delayed Leslie-Gower model under homogeneous Neumann boundary conditions. We give the stability analysis of the equilibria of the model and show the existence of Hopf bifurcation at the positive equilibrium under some conditions. Furthermore, we investigate the stability and direction of bifurcating periodic orbits by using normal form theorem and the center manifold theorem. |
|---|---|
| ISSN: | 1026-0226 1607-887X |