Discrete universality theorem for Matsumoto zeta-functions and nontrivial zeros of the Riemann zeta-function
In 2017, Garunkštis, Laurinčikas and Macaitienė proved the discrete universality theorem for the Riemann zeta-function shifted by imaginary parts of nontrivial zeros of the Riemann zeta-function. This discrete universality has been extended to various zeta-functions and L-functions. In this paper,...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2025-01-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://gc.vgtu.lt/index.php/MMA/article/view/20817 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832584064101515264 |
---|---|
author | Keita Nakai |
author_facet | Keita Nakai |
author_sort | Keita Nakai |
collection | DOAJ |
description |
In 2017, Garunkštis, Laurinčikas and Macaitienė proved the discrete universality theorem for the Riemann zeta-function shifted by imaginary parts of nontrivial zeros of the Riemann zeta-function. This discrete universality has been extended to various zeta-functions and L-functions. In this paper, we generalize this discrete universality for Matsumoto zeta-functions.
|
format | Article |
id | doaj-art-4f64de9107014c04b2edbe008f72bc16 |
institution | Kabale University |
issn | 1392-6292 1648-3510 |
language | English |
publishDate | 2025-01-01 |
publisher | Vilnius Gediminas Technical University |
record_format | Article |
series | Mathematical Modelling and Analysis |
spelling | doaj-art-4f64de9107014c04b2edbe008f72bc162025-01-27T16:30:18ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102025-01-0130110.3846/mma.2025.20817Discrete universality theorem for Matsumoto zeta-functions and nontrivial zeros of the Riemann zeta-functionKeita Nakai0Graduate school of Mathematics, Nagoya University, Chikusa-Ku, 464-8602 Nagoya, Japan In 2017, Garunkštis, Laurinčikas and Macaitienė proved the discrete universality theorem for the Riemann zeta-function shifted by imaginary parts of nontrivial zeros of the Riemann zeta-function. This discrete universality has been extended to various zeta-functions and L-functions. In this paper, we generalize this discrete universality for Matsumoto zeta-functions. https://gc.vgtu.lt/index.php/MMA/article/view/20817Matsumoto zeta-functionuniversalitynontrivial zeros |
spellingShingle | Keita Nakai Discrete universality theorem for Matsumoto zeta-functions and nontrivial zeros of the Riemann zeta-function Mathematical Modelling and Analysis Matsumoto zeta-function universality nontrivial zeros |
title | Discrete universality theorem for Matsumoto zeta-functions and nontrivial zeros of the Riemann zeta-function |
title_full | Discrete universality theorem for Matsumoto zeta-functions and nontrivial zeros of the Riemann zeta-function |
title_fullStr | Discrete universality theorem for Matsumoto zeta-functions and nontrivial zeros of the Riemann zeta-function |
title_full_unstemmed | Discrete universality theorem for Matsumoto zeta-functions and nontrivial zeros of the Riemann zeta-function |
title_short | Discrete universality theorem for Matsumoto zeta-functions and nontrivial zeros of the Riemann zeta-function |
title_sort | discrete universality theorem for matsumoto zeta functions and nontrivial zeros of the riemann zeta function |
topic | Matsumoto zeta-function universality nontrivial zeros |
url | https://gc.vgtu.lt/index.php/MMA/article/view/20817 |
work_keys_str_mv | AT keitanakai discreteuniversalitytheoremformatsumotozetafunctionsandnontrivialzerosoftheriemannzetafunction |