Plagiarism types and detection methods: a systematic survey of algorithms in text analysis
Plagiarism in academic and creative writing continues to be a significant challenge, driven by the exponential growth of digital content. This paper presents a systematic survey of various types of plagiarism and the detection algorithms employed in text analysis. We categorize plagiarism into disti...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-03-01
|
| Series: | Frontiers in Computer Science |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fcomp.2025.1504725/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Plagiarism in academic and creative writing continues to be a significant challenge, driven by the exponential growth of digital content. This paper presents a systematic survey of various types of plagiarism and the detection algorithms employed in text analysis. We categorize plagiarism into distinct types, including verbatim, paraphrasing, translation, and idea-based plagiarism, discussing the nuances that make detection complex. This survey critically evaluates existing literature, contrasting traditional methods like string-matching with advanced machine learning, natural language processing, and deep learning approaches. We highlight notable works focusing on cross-language plagiarism detection, source code plagiarism, and intrinsic detection techniques, identifying their contributions and limitations. Additionally, this paper explores emerging challenges such as detecting cross-language plagiarism and AI-generated content. By synthesizing the current landscape and emphasizing recent advancements, we aim to guide future research directions and enhance the robustness of plagiarism detection systems across various domains. |
|---|---|
| ISSN: | 2624-9898 |