Experimental and numerical study on vibration-based damage detection and localisation in laminated composite plates
Damage detection in composite materials is crucial for ensuring the safety and reliability of engineering structures. Conventional methods often face challenges in accurately identifying damage in plate-like structures, particularly in scenarios involving multiple damages or small-scale delamination...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Gruppo Italiano Frattura
2024-01-01
|
Series: | Fracture and Structural Integrity |
Subjects: | |
Online Access: | https://www.fracturae.com/index.php/fis/article/view/4529/3916 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832568704423952384 |
---|---|
author | Saeesh Verenkar I. Sridhar Vinayak S. Uppin P. S. Shivakumar Gouda |
author_facet | Saeesh Verenkar I. Sridhar Vinayak S. Uppin P. S. Shivakumar Gouda |
author_sort | Saeesh Verenkar |
collection | DOAJ |
description | Damage detection in composite materials is crucial for ensuring the safety and reliability of engineering structures. Conventional methods often face challenges in accurately identifying damage in plate-like structures, particularly in scenarios involving multiple damages or small-scale delamination. This study focuses on investigating the detection and localization of delamination in composite plates by employing both experimental and numerical modal analysis. An eight-ply woven Glass-Epoxy composite laminate with and without damage was prepared with the aid of hand lamination technique. Laminate was fixed to a Clamped-Free-Free-Free (CFFF) boundary condition for experimental modal analysis by introducing controlled damage to examine its impact on modal properties. To validate the natural frequencies (NFs) of damaged and undamaged composite laminates, a numerical analysis was conducted using ANSYS Parametric Design Language (APDL). Further, to advance the understanding of using modal shapes and their spatial derivatives for damage localization in composite plates under various damage situations, post-processing of simulation results was conducted using MATLAB. Finite Difference Method has been employed to calculate the derivatives, and a novel damage index (DI) is proposed to enhance damage localization capabilities. The results affirm that the proposed DI is effective and precise in identifying damage in plate-like structures, both for individual and multiple damage scenarios. This research study presents a novel approach for identifying and pinpointing damage in composite plates, thereby making a valuable contribution to the field of structural health monitoring (SHM) applications |
format | Article |
id | doaj-art-4eb7ebe79245410199d360fed7ae5b98 |
institution | Kabale University |
issn | 1971-8993 |
language | English |
publishDate | 2024-01-01 |
publisher | Gruppo Italiano Frattura |
record_format | Article |
series | Fracture and Structural Integrity |
spelling | doaj-art-4eb7ebe79245410199d360fed7ae5b982025-02-03T00:39:27ZengGruppo Italiano FratturaFracture and Structural Integrity1971-89932024-01-01186716317510.3221/IGF-ESIS.67.1210.3221/IGF-ESIS.67.12Experimental and numerical study on vibration-based damage detection and localisation in laminated composite platesSaeesh VerenkarI. SridharVinayak S. UppinP. S. Shivakumar GoudaDamage detection in composite materials is crucial for ensuring the safety and reliability of engineering structures. Conventional methods often face challenges in accurately identifying damage in plate-like structures, particularly in scenarios involving multiple damages or small-scale delamination. This study focuses on investigating the detection and localization of delamination in composite plates by employing both experimental and numerical modal analysis. An eight-ply woven Glass-Epoxy composite laminate with and without damage was prepared with the aid of hand lamination technique. Laminate was fixed to a Clamped-Free-Free-Free (CFFF) boundary condition for experimental modal analysis by introducing controlled damage to examine its impact on modal properties. To validate the natural frequencies (NFs) of damaged and undamaged composite laminates, a numerical analysis was conducted using ANSYS Parametric Design Language (APDL). Further, to advance the understanding of using modal shapes and their spatial derivatives for damage localization in composite plates under various damage situations, post-processing of simulation results was conducted using MATLAB. Finite Difference Method has been employed to calculate the derivatives, and a novel damage index (DI) is proposed to enhance damage localization capabilities. The results affirm that the proposed DI is effective and precise in identifying damage in plate-like structures, both for individual and multiple damage scenarios. This research study presents a novel approach for identifying and pinpointing damage in composite plates, thereby making a valuable contribution to the field of structural health monitoring (SHM) applicationshttps://www.fracturae.com/index.php/fis/article/view/4529/3916damagecompositemodalsimulationfinite differencedelamination |
spellingShingle | Saeesh Verenkar I. Sridhar Vinayak S. Uppin P. S. Shivakumar Gouda Experimental and numerical study on vibration-based damage detection and localisation in laminated composite plates Fracture and Structural Integrity damage composite modal simulation finite difference delamination |
title | Experimental and numerical study on vibration-based damage detection and localisation in laminated composite plates |
title_full | Experimental and numerical study on vibration-based damage detection and localisation in laminated composite plates |
title_fullStr | Experimental and numerical study on vibration-based damage detection and localisation in laminated composite plates |
title_full_unstemmed | Experimental and numerical study on vibration-based damage detection and localisation in laminated composite plates |
title_short | Experimental and numerical study on vibration-based damage detection and localisation in laminated composite plates |
title_sort | experimental and numerical study on vibration based damage detection and localisation in laminated composite plates |
topic | damage composite modal simulation finite difference delamination |
url | https://www.fracturae.com/index.php/fis/article/view/4529/3916 |
work_keys_str_mv | AT saeeshverenkar experimentalandnumericalstudyonvibrationbaseddamagedetectionandlocalisationinlaminatedcompositeplates AT isridhar experimentalandnumericalstudyonvibrationbaseddamagedetectionandlocalisationinlaminatedcompositeplates AT vinayaksuppin experimentalandnumericalstudyonvibrationbaseddamagedetectionandlocalisationinlaminatedcompositeplates AT psshivakumargouda experimentalandnumericalstudyonvibrationbaseddamagedetectionandlocalisationinlaminatedcompositeplates |