TQVGModel: Tomato Quality Visual Grading and Instance Segmentation Deep Learning Model for Complex Scenarios

To address the challenges of poor instance segmentation accuracy, real-time performance trade-offs, high miss rates, and imprecise edge localization in tomato grading and harvesting robots operating in complex scenarios (e.g., dense growth, occluded fruits, and dynamic viewing conditions), an accura...

Full description

Saved in:
Bibliographic Details
Main Authors: Peichao Cong, Kun Wang, Ji Liang, Yutao Xu, Tianheng Li, Bin Xue
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/15/6/1273
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the challenges of poor instance segmentation accuracy, real-time performance trade-offs, high miss rates, and imprecise edge localization in tomato grading and harvesting robots operating in complex scenarios (e.g., dense growth, occluded fruits, and dynamic viewing conditions), an accurate, efficient, and robust visual instance segmentation network is urgently needed. This paper proposes TQVGModel (Tomato Quality Visual Grading Model), a Mask RCNN-based instance segmentation network for tomato quality grading. First, TQVGModel employs a multi-branch IncepConvV2 backbone, reconstructed via ConvNeXt architecture and large-kernel convolution decomposition, to enhance instance segmentation accuracy while maintaining real-time performance. Second, the Class Balanced Focal Loss is adopted in the classification branch to prioritize sparse or challenging classes, reducing the miss rates in complex scenes. Third, an Enhanced Sobel (E-Sobel) operator integrates boundary prediction with an edge loss function, improving edge localization precision for quality assessment. Additionally, a quality grading subsystem is designed to automate tomato evaluation, supporting subsequent harvesting and growth monitoring. A high-quality benchmark dataset, Tomato-Seg, is constructed for complex-scene tomato instance segmentation. Experiments show that the TQVGModel-Tiny variant achieves an 80.05% mAP (7.04% higher than Mask R-CNN), with 33.98 M parameters (10.2 M fewer) and 53.38 ms inference speed (16.6 ms faster). These results demonstrate TQVGModel’s high accuracy, real-time capability, reduced miss rates, and precise edge localization, providing a theoretical foundation for tomato grading and harvesting in complex environments.
ISSN:2073-4395