Periodic and Solitary-Wave Solutions for a Variant of the K(3,2) Equation

We employ the bifurcation method of planar dynamical systems and qualitative theory of polynomial differential systems to derive new bounded traveling-wave solutions for a variant of the K(3,2) equation. For the focusing branch, we obtain hump-shaped and valley-shaped solitary-wave solutions and som...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiangbo Zhou, Lixin Tian
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2011/582512
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We employ the bifurcation method of planar dynamical systems and qualitative theory of polynomial differential systems to derive new bounded traveling-wave solutions for a variant of the K(3,2) equation. For the focusing branch, we obtain hump-shaped and valley-shaped solitary-wave solutions and some periodic solutions. For the defocusing branch, the nonexistence of solitary traveling wave solutions is shown. Meanwhile, some periodic solutions are also obtained. The results presented in this paper supplement the previous results.
ISSN:1687-9643
1687-9651