Generalizations of Kitaev’s honeycomb model from braided fusion categories

Fusion surface models, as introduced by Inamura and Ohmori, extend the concept of anyon chains to 2+1 dimensions, taking fusion 2-categories as their input. In this work, we construct and analyze fusion surface models on the honeycomb lattice built from braided fusion 1-categories. These models pres...

Full description

Saved in:
Bibliographic Details
Main Author: Luisa Eck, Paul Fendley
Format: Article
Language:English
Published: SciPost 2025-06-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.18.6.170
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fusion surface models, as introduced by Inamura and Ohmori, extend the concept of anyon chains to 2+1 dimensions, taking fusion 2-categories as their input. In this work, we construct and analyze fusion surface models on the honeycomb lattice built from braided fusion 1-categories. These models preserve mutually commuting plaquette operators and anomalous 1-form symmetries. Their Hamiltonian is chosen to mimic the structure of Kitaev's honeycomb model, which is unitarily equivalent to the Ising fusion surface model. In the anisotropic limit, where one coupling constant is dominant, the fusion surface models reduce to Levin-Wen string-nets. In the isotropic limit, they are described by weakly coupled anyon chains and are likely to realize chiral topological order. We focus on three specific examples: (i) Kitaev's honeycomb model with a perturbation breaking time-reversal symmetry that realizes chiral Ising topological order, (ii) a $\mathbb{Z}_N$ generalization proposed by Barkeshli et al., which potentially realizes chiral parafermion topological order, and (iii) a novel Fibonacci honeycomb model featuring a non-invertible 1-form symmetry.
ISSN:2542-4653