On the goodness-of-fits of the generalized lambda distribution on high-frequency stock index returns
In this paper, we investigate the goodness-of-fit of the flexible four-parameter generalized Lambda Distribution (GLD) for high-frequency 5-min returns sampled from the DJI30 Index. Applying Moment Matching (MM) and Maximum Likelihood Estimation (MLE) techniques, we highlight the significance of the...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2022-12-01
|
| Series: | Cogent Economics & Finance |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.1080/23322039.2022.2095764 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we investigate the goodness-of-fit of the flexible four-parameter generalized Lambda Distribution (GLD) for high-frequency 5-min returns sampled from the DJI30 Index. Applying Moment Matching (MM) and Maximum Likelihood Estimation (MLE) techniques, we highlight the significance of the higher-order parameters of the GLD distribution to depict the asymmetric and fat-tailed behaviour observed in high-frequency returns data. We also show and explain why the MLE consistently outperforms the MM; especially in the presence of “outliers”. Finally, we use lambda-space scatterplots to introduce, clarify and discuss additional stylized facts of high-frequency index returns not found in the extant high-frequency literature. |
|---|---|
| ISSN: | 2332-2039 |