Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization Problems

In this article, we study a Grover-type method for quadratic unconstrained binary optimization (QUBO) problems. For an <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-dimensional QUBO problem with <inline-formula><tex-math notatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Akos Nagy, Jaime Park, Cindy Zhang, Atithi Acharya, Alex Khan
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Transactions on Quantum Engineering
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10726869/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832586855353155584
author Akos Nagy
Jaime Park
Cindy Zhang
Atithi Acharya
Alex Khan
author_facet Akos Nagy
Jaime Park
Cindy Zhang
Atithi Acharya
Alex Khan
author_sort Akos Nagy
collection DOAJ
description In this article, we study a Grover-type method for quadratic unconstrained binary optimization (QUBO) problems. For an <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-dimensional QUBO problem with <inline-formula><tex-math notation="LaTeX">$m$</tex-math></inline-formula> nonzero terms, we construct a marker oracle for such problems with a tunable parameter, <inline-formula><tex-math notation="LaTeX">$\Lambda \in [ 1, m ] \cap \mathbb {Z}$</tex-math></inline-formula>. At <inline-formula><tex-math notation="LaTeX">$d \in \mathbb {Z}_+$</tex-math></inline-formula> precision, the oracle uses <inline-formula><tex-math notation="LaTeX">$O (n + \Lambda d)$</tex-math></inline-formula> qubits and has total depth of <inline-formula><tex-math notation="LaTeX">$O (\frac{m}{\Lambda } \log _{2} (n) + \log _{2} (d))$</tex-math></inline-formula> and a non-Clifford depth of <inline-formula><tex-math notation="LaTeX">$O (\frac{m}{\Lambda })$</tex-math></inline-formula>. Moreover, each qubit is required to be connected to at most <inline-formula><tex-math notation="LaTeX">$O (\log _{2} (\Lambda + d))$</tex-math></inline-formula> other qubits. In the case of a maximum graph cuts, as <inline-formula><tex-math notation="LaTeX">$d = 2 \left\lceil \log _{2} (n) \right\rceil$</tex-math></inline-formula> always suffices, the depth of the marker oracle can be made as shallow as <inline-formula><tex-math notation="LaTeX">$O (\log _{2} (n))$</tex-math></inline-formula>. For all values of <inline-formula><tex-math notation="LaTeX">$\Lambda$</tex-math></inline-formula>, the non-Clifford gate count of these oracles is strictly lower (at least by a factor of <inline-formula><tex-math notation="LaTeX">$\sim 2$</tex-math></inline-formula>) than previous constructions. Furthermore, we introduce a novel fixed-point Grover adaptive search for QUBO problems, using our oracle design and a hybrid fixed-point Grover search, motivated by the works of Boyer et al. (1988) and Li et al. (2019). This method has better performance guarantees than previous Grover adaptive search methods. Some of our results are novel and useful for any method based on the fixed-point Grover search. Finally, we give a heuristic argument that, with high probability and in <inline-formula><tex-math notation="LaTeX">$O (\frac{\log _{2} (n)}{\sqrt{\epsilon }})$</tex-math></inline-formula> time, this adaptive method finds a configuration that is among the best <inline-formula><tex-math notation="LaTeX">$\epsilon 2^{n}$</tex-math></inline-formula> ones.
format Article
id doaj-art-4d92e74dd4834638b0156df17a41694f
institution Kabale University
issn 2689-1808
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Transactions on Quantum Engineering
spelling doaj-art-4d92e74dd4834638b0156df17a41694f2025-01-25T00:03:42ZengIEEEIEEE Transactions on Quantum Engineering2689-18082024-01-01511210.1109/TQE.2024.348465010726869Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization ProblemsAkos Nagy0https://orcid.org/0000-0002-1799-7631Jaime Park1https://orcid.org/0009-0009-7806-5211Cindy Zhang2Atithi Acharya3Alex Khan4https://orcid.org/0000-0003-0324-1566BEIT Canada, Toronto, ON, CanadaVanderbilt University, Nashville, TN, USACindy Zhang resides in, Piscataway, NJ, USARutgers, The State University of New Jersey, New Brunswick, NJ, USANational Quantum Laboratory, University of Maryland, College Park, MD, USAIn this article, we study a Grover-type method for quadratic unconstrained binary optimization (QUBO) problems. For an <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-dimensional QUBO problem with <inline-formula><tex-math notation="LaTeX">$m$</tex-math></inline-formula> nonzero terms, we construct a marker oracle for such problems with a tunable parameter, <inline-formula><tex-math notation="LaTeX">$\Lambda \in [ 1, m ] \cap \mathbb {Z}$</tex-math></inline-formula>. At <inline-formula><tex-math notation="LaTeX">$d \in \mathbb {Z}_+$</tex-math></inline-formula> precision, the oracle uses <inline-formula><tex-math notation="LaTeX">$O (n + \Lambda d)$</tex-math></inline-formula> qubits and has total depth of <inline-formula><tex-math notation="LaTeX">$O (\frac{m}{\Lambda } \log _{2} (n) + \log _{2} (d))$</tex-math></inline-formula> and a non-Clifford depth of <inline-formula><tex-math notation="LaTeX">$O (\frac{m}{\Lambda })$</tex-math></inline-formula>. Moreover, each qubit is required to be connected to at most <inline-formula><tex-math notation="LaTeX">$O (\log _{2} (\Lambda + d))$</tex-math></inline-formula> other qubits. In the case of a maximum graph cuts, as <inline-formula><tex-math notation="LaTeX">$d = 2 \left\lceil \log _{2} (n) \right\rceil$</tex-math></inline-formula> always suffices, the depth of the marker oracle can be made as shallow as <inline-formula><tex-math notation="LaTeX">$O (\log _{2} (n))$</tex-math></inline-formula>. For all values of <inline-formula><tex-math notation="LaTeX">$\Lambda$</tex-math></inline-formula>, the non-Clifford gate count of these oracles is strictly lower (at least by a factor of <inline-formula><tex-math notation="LaTeX">$\sim 2$</tex-math></inline-formula>) than previous constructions. Furthermore, we introduce a novel fixed-point Grover adaptive search for QUBO problems, using our oracle design and a hybrid fixed-point Grover search, motivated by the works of Boyer et al. (1988) and Li et al. (2019). This method has better performance guarantees than previous Grover adaptive search methods. Some of our results are novel and useful for any method based on the fixed-point Grover search. Finally, we give a heuristic argument that, with high probability and in <inline-formula><tex-math notation="LaTeX">$O (\frac{\log _{2} (n)}{\sqrt{\epsilon }})$</tex-math></inline-formula> time, this adaptive method finds a configuration that is among the best <inline-formula><tex-math notation="LaTeX">$\epsilon 2^{n}$</tex-math></inline-formula> ones.https://ieeexplore.ieee.org/document/10726869/Quantum computingquantum algorithmoptimization
spellingShingle Akos Nagy
Jaime Park
Cindy Zhang
Atithi Acharya
Alex Khan
Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization Problems
IEEE Transactions on Quantum Engineering
Quantum computing
quantum algorithm
optimization
title Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization Problems
title_full Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization Problems
title_fullStr Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization Problems
title_full_unstemmed Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization Problems
title_short Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization Problems
title_sort fixed point grover adaptive search for quadratic binary optimization problems
topic Quantum computing
quantum algorithm
optimization
url https://ieeexplore.ieee.org/document/10726869/
work_keys_str_mv AT akosnagy fixedpointgroveradaptivesearchforquadraticbinaryoptimizationproblems
AT jaimepark fixedpointgroveradaptivesearchforquadraticbinaryoptimizationproblems
AT cindyzhang fixedpointgroveradaptivesearchforquadraticbinaryoptimizationproblems
AT atithiacharya fixedpointgroveradaptivesearchforquadraticbinaryoptimizationproblems
AT alexkhan fixedpointgroveradaptivesearchforquadraticbinaryoptimizationproblems