Modified One-Parameter Liu Estimator for the Linear Regression Model

Motivated by the ridge regression (Hoerl and Kennard, 1970) and Liu (1993) estimators, this paper proposes a modified Liu estimator to solve the multicollinearity problem for the linear regression model. This modification places this estimator in the class of the ridge and Liu estimators with a sing...

Full description

Saved in:
Bibliographic Details
Main Authors: Adewale F. Lukman, B. M. Golam Kibria, Kayode Ayinde, Segun L. Jegede
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Modelling and Simulation in Engineering
Online Access:http://dx.doi.org/10.1155/2020/9574304
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551249711464448
author Adewale F. Lukman
B. M. Golam Kibria
Kayode Ayinde
Segun L. Jegede
author_facet Adewale F. Lukman
B. M. Golam Kibria
Kayode Ayinde
Segun L. Jegede
author_sort Adewale F. Lukman
collection DOAJ
description Motivated by the ridge regression (Hoerl and Kennard, 1970) and Liu (1993) estimators, this paper proposes a modified Liu estimator to solve the multicollinearity problem for the linear regression model. This modification places this estimator in the class of the ridge and Liu estimators with a single biasing parameter. Theoretical comparisons, real-life application, and simulation results show that it consistently dominates the usual Liu estimator. Under some conditions, it performs better than the ridge regression estimators in the smaller MSE sense. Two real-life data are analyzed to illustrate the findings of the paper and the performances of the estimators assessed by MSE and the mean squared prediction error. The application result agrees with the theoretical and simulation results.
format Article
id doaj-art-4d406ab2a717416c80593d2cc7dd5b51
institution Kabale University
issn 1687-5591
1687-5605
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Modelling and Simulation in Engineering
spelling doaj-art-4d406ab2a717416c80593d2cc7dd5b512025-02-03T06:04:37ZengWileyModelling and Simulation in Engineering1687-55911687-56052020-01-01202010.1155/2020/95743049574304Modified One-Parameter Liu Estimator for the Linear Regression ModelAdewale F. Lukman0B. M. Golam Kibria1Kayode Ayinde2Segun L. Jegede3Department of Physical Sciences, Landmark University, Omu-Aran, NigeriaDepartment of Mathematics and Statistics, Florida International University, USADepartment of Statistics, Federal University of Technology, Akure, NigeriaDepartment of Physical Sciences, Landmark University, Omu-Aran, NigeriaMotivated by the ridge regression (Hoerl and Kennard, 1970) and Liu (1993) estimators, this paper proposes a modified Liu estimator to solve the multicollinearity problem for the linear regression model. This modification places this estimator in the class of the ridge and Liu estimators with a single biasing parameter. Theoretical comparisons, real-life application, and simulation results show that it consistently dominates the usual Liu estimator. Under some conditions, it performs better than the ridge regression estimators in the smaller MSE sense. Two real-life data are analyzed to illustrate the findings of the paper and the performances of the estimators assessed by MSE and the mean squared prediction error. The application result agrees with the theoretical and simulation results.http://dx.doi.org/10.1155/2020/9574304
spellingShingle Adewale F. Lukman
B. M. Golam Kibria
Kayode Ayinde
Segun L. Jegede
Modified One-Parameter Liu Estimator for the Linear Regression Model
Modelling and Simulation in Engineering
title Modified One-Parameter Liu Estimator for the Linear Regression Model
title_full Modified One-Parameter Liu Estimator for the Linear Regression Model
title_fullStr Modified One-Parameter Liu Estimator for the Linear Regression Model
title_full_unstemmed Modified One-Parameter Liu Estimator for the Linear Regression Model
title_short Modified One-Parameter Liu Estimator for the Linear Regression Model
title_sort modified one parameter liu estimator for the linear regression model
url http://dx.doi.org/10.1155/2020/9574304
work_keys_str_mv AT adewaleflukman modifiedoneparameterliuestimatorforthelinearregressionmodel
AT bmgolamkibria modifiedoneparameterliuestimatorforthelinearregressionmodel
AT kayodeayinde modifiedoneparameterliuestimatorforthelinearregressionmodel
AT segunljegede modifiedoneparameterliuestimatorforthelinearregressionmodel