Autocorrelation properties of temporal networks governed by dynamic node variables
We study synthetic temporal networks whose evolution is determined by stochastically evolving node variables—synthetic analogues of, e.g., temporal proximity networks of mobile agents. We quantify the long-timescale correlations of these evolving networks by an autocorrelative measure of network-str...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2025-01-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.7.013083 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study synthetic temporal networks whose evolution is determined by stochastically evolving node variables—synthetic analogues of, e.g., temporal proximity networks of mobile agents. We quantify the long-timescale correlations of these evolving networks by an autocorrelative measure of network-structural memory. Several distinct patterns of autocorrelation arise, including power-law decay and exponential decay, depending on the choice of node-variable dynamics and connection probability function. Our methods are also applicable in wider contexts; our temporal network models are tractable mathematically and in simulation, and our long-term memory quantification is analytically tractable and straightforwardly computable from temporal network data. |
---|---|
ISSN: | 2643-1564 |