Spectrum Sharing with Vehicular Communication in Cognitive Small-Cell Networks

An increasing number of vehicles make spectrum resources face serious challenges in vehicular cognitive small-cell networks. The means of spectrum sharing can greatly alleviate this pressure. In this paper, we introduce a supermodular game theoretic approach to analyze the problem of spectrum sharin...

Full description

Saved in:
Bibliographic Details
Main Authors: Guilu Wu, Hongyun Chu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2020/6897646
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An increasing number of vehicles make spectrum resources face serious challenges in vehicular cognitive small-cell networks. The means of spectrum sharing can greatly alleviate this pressure. In this paper, we introduce a supermodular game theoretic approach to analyze the problem of spectrum sharing. The small-cell BS (primary service provider, PSP) and the vehicle (secondary service provider, SSP) can share the spectrum, where the PSP can sell idle spectrum resources to the SSP. This is taken as a spectrum trading market, and a Bertrand competition model is considered to depict this phenomenon. Different PSPs compete with each other to maximize their individual profits. The Bertrand competition model can be proved as a supermodular game, and the corresponding Nash equilibrium (NE) solution is provided as the optimal price solution. Hence, an improved genetic simulated annealing algorithm is designed to achieve NE. Simulation results demonstrate that the NE point for the price of the primary service provider exists. The change of the exogenous variable is also analyzed on the equilibrium point.
ISSN:1687-5869
1687-5877