Functionalized conductive polymer composites for tissue engineering and biomedical applications- a mini review

Tissue engineering (TE) has emerged as a promising therapeutic strategy, employing artificial scaffolds to regenerate functional cardiac tissue and offering new hope for innovative treatment approaches. A straightforward method for producing biodegradable, conductive polymer-based composites involve...

Full description

Saved in:
Bibliographic Details
Main Authors: V. Gayathri, Tabrej Khan, M. Gowtham, R. Balan, Tamer A. Sebaey
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-02-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fbioe.2025.1533944/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tissue engineering (TE) has emerged as a promising therapeutic strategy, employing artificial scaffolds to regenerate functional cardiac tissue and offering new hope for innovative treatment approaches. A straightforward method for producing biodegradable, conductive polymer-based composites involves blending conductive polymers directly with biodegradable ones. This approach’s flexibility enables the development of diverse biodegradable, conductive polymer scaffolds, which have been extensively explored in tissue engineering and regenerative medicine. While this technique successfully combines the advantages of both polymer types, it may face challenges such as potential compromises in conductivity and biodegradability. This review emphasizes the potential to tailor degradation rates and conductivity by selecting appropriate polymer types and ratios, ensuring adaptability for various biomedical applications.
ISSN:2296-4185