Quantum bumpless pipe dreams
Schubert polynomials are polynomial representatives of Schubert classes in the cohomology of the complete flag variety and have a combinatorial formulation in terms of bumpless pipe dreams. Quantum double Schubert polynomials are polynomial representatives of Schubert classes in the torus-equivarian...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2025-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2050509424001129/type/journal_article |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Schubert polynomials are polynomial representatives of Schubert classes in the cohomology of the complete flag variety and have a combinatorial formulation in terms of bumpless pipe dreams. Quantum double Schubert polynomials are polynomial representatives of Schubert classes in the torus-equivariant quantum cohomology of the complete flag variety, but no analogous combinatorial formulation had been discovered. We introduce a generalization of the bumpless pipe dreams called quantum bumpless pipe dreams, giving a novel combinatorial formula for quantum double Schubert polynomials as a sum of binomial weights of quantum bumpless pipe dreams. We give a bijective proof for this formula by showing that the sum of binomial weights satisfies a defining transition equation. |
---|---|
ISSN: | 2050-5094 |