On the Work of Cartan and Münzner on Isoparametric Hypersurfaces
A hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mi>n</mi></msup></semantics></math></inline-formula> in a real space form <inlin...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/14/1/56 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832589111040409600 |
---|---|
author | Thomas E. Cecil Patrick J. Ryan |
author_facet | Thomas E. Cecil Patrick J. Ryan |
author_sort | Thomas E. Cecil |
collection | DOAJ |
description | A hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mi>n</mi></msup></semantics></math></inline-formula> in a real space form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi mathvariant="bold">R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>S</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> is isoparametric if it has constant principal curvatures. This paper is a survey of the fundamental work of Cartan and Münzner on the theory of isoparametric hypersurfaces in real space forms, in particular, spheres. This work is contained in four papers of Cartan published during the period 1938–1940 and two papers of Münzner that were published in preprint form in the early 1970s and as journal articles in 1980–1981. These papers of Cartan and Münzner have been the foundation of the extensive field of isoparametric hypersurfaces, and they have all been recently translated into English by T. Cecil. The paper concludes with a brief survey of the recently completed classification of isoparametric hypersurfaces in spheres. |
format | Article |
id | doaj-art-4b4ae7753134412baf81fd751d8642b3 |
institution | Kabale University |
issn | 2075-1680 |
language | English |
publishDate | 2025-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj-art-4b4ae7753134412baf81fd751d8642b32025-01-24T13:22:17ZengMDPI AGAxioms2075-16802025-01-011415610.3390/axioms14010056On the Work of Cartan and Münzner on Isoparametric HypersurfacesThomas E. Cecil0Patrick J. Ryan1Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA 01610, USADepartment of Mathematics and Statistics, McMaster University, Hamilton, ON L8S4K1, CanadaA hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>M</mi><mi>n</mi></msup></semantics></math></inline-formula> in a real space form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi mathvariant="bold">R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>S</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> is isoparametric if it has constant principal curvatures. This paper is a survey of the fundamental work of Cartan and Münzner on the theory of isoparametric hypersurfaces in real space forms, in particular, spheres. This work is contained in four papers of Cartan published during the period 1938–1940 and two papers of Münzner that were published in preprint form in the early 1970s and as journal articles in 1980–1981. These papers of Cartan and Münzner have been the foundation of the extensive field of isoparametric hypersurfaces, and they have all been recently translated into English by T. Cecil. The paper concludes with a brief survey of the recently completed classification of isoparametric hypersurfaces in spheres.https://www.mdpi.com/2075-1680/14/1/56isoparametric hypersurfacesDupin hypersurfaces |
spellingShingle | Thomas E. Cecil Patrick J. Ryan On the Work of Cartan and Münzner on Isoparametric Hypersurfaces Axioms isoparametric hypersurfaces Dupin hypersurfaces |
title | On the Work of Cartan and Münzner on Isoparametric Hypersurfaces |
title_full | On the Work of Cartan and Münzner on Isoparametric Hypersurfaces |
title_fullStr | On the Work of Cartan and Münzner on Isoparametric Hypersurfaces |
title_full_unstemmed | On the Work of Cartan and Münzner on Isoparametric Hypersurfaces |
title_short | On the Work of Cartan and Münzner on Isoparametric Hypersurfaces |
title_sort | on the work of cartan and munzner on isoparametric hypersurfaces |
topic | isoparametric hypersurfaces Dupin hypersurfaces |
url | https://www.mdpi.com/2075-1680/14/1/56 |
work_keys_str_mv | AT thomasececil ontheworkofcartanandmunzneronisoparametrichypersurfaces AT patrickjryan ontheworkofcartanandmunzneronisoparametrichypersurfaces |