Quasigeostrophic Equations for Fractional Powers of Infinitesimal Generators
In this paper we treat the following partial differential equation, the quasigeostrophic equation: ∂/∂t+u·∇f=-σ-Aαf, 0≤α≤1, where (A,D(A)) is the infinitesimal generator of a convolution C0-semigroup of positive kernel on Lp(Rn), with 1≤p<∞. Firstly, we give remarkable pointwise and integral ine...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2019/4763450 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we treat the following partial differential equation, the quasigeostrophic equation: ∂/∂t+u·∇f=-σ-Aαf, 0≤α≤1, where (A,D(A)) is the infinitesimal generator of a convolution C0-semigroup of positive kernel on Lp(Rn), with 1≤p<∞. Firstly, we give remarkable pointwise and integral inequalities involving the fractional powers (-A)α for 0≤α≤1. We use these estimates to obtain Lp-decayment of solutions of the above quasigeostrophic equation. These results extend the case of fractional derivatives (taking A=Δ, the Laplacian), which has been studied in the literature. |
---|---|
ISSN: | 2314-8896 2314-8888 |