Scalable Synthesis of PtAu Nanoalloy-Decorated Hydrogenated TiO<sub>2</sub> for High-Efficiency Indoor Formaldehyde Photodegradation
Formaldehyde, a pervasive indoor air pollutant posing significant health risks, has driven extensive research into advanced mitigation strategies to ensure safer living environments. Herein, this study presents a synthesis method for the large-scale production of hydrogenated TiO<sub>2</sub...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/15/9/683 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Formaldehyde, a pervasive indoor air pollutant posing significant health risks, has driven extensive research into advanced mitigation strategies to ensure safer living environments. Herein, this study presents a synthesis method for the large-scale production of hydrogenated TiO<sub>2</sub> (P25) loaded with PtAu nanoalloys (P25(H)-PtAu), using a combination of ball milling and high-temperature annealing. Hydrogenation-induced defect-rich TiO<sub>2</sub> efficiently improves visible light absorption, enhancing the utilization of visible light in photocatalytic reactions. Mechanochemical ball milling was employed to prepare ultrasmall PtAu nanoalloys with a size of 3.7 ± 0.1 nm, which were uniformly dispersed on the surface of P25(H). Density functional theory (DFT) results indicate that PtAu nanoalloys synergistically enhance charge separation via Schottky junctions and surface reaction kinetics by optimizing reactant adsorption. As a result, P25(H)-PtAu achieves industrially relevant formaldehyde removal efficiency (97.8%) under ambient light conditions while maintaining scalability (10 g batches). This work provides a scalable framework for developing manufacturable photocatalysts, with immediate applications in heating, ventilation and air conditioning systems, and air purifiers. |
|---|---|
| ISSN: | 2079-4991 |