A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization

Abstract Gene expression profiling is of key importance in all domains of life sciences, as medicine, environment, and plants, for both basic and applied research. Despite the emergence of microarrays and high-throughput sequencing, qPCR remains a standard method for gene expression analyses, with i...

Full description

Saved in:
Bibliographic Details
Main Authors: Anis Djari, Guillaume Madignier, Christian Chervin, Benoît van der Rest, James J. Giovannoni, Mondher Bouzayen, Julien Pirrello, Elie Maza
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-82651-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850156530298519552
author Anis Djari
Guillaume Madignier
Christian Chervin
Benoît van der Rest
James J. Giovannoni
Mondher Bouzayen
Julien Pirrello
Elie Maza
author_facet Anis Djari
Guillaume Madignier
Christian Chervin
Benoît van der Rest
James J. Giovannoni
Mondher Bouzayen
Julien Pirrello
Elie Maza
author_sort Anis Djari
collection DOAJ
description Abstract Gene expression profiling is of key importance in all domains of life sciences, as medicine, environment, and plants, for both basic and applied research. Despite the emergence of microarrays and high-throughput sequencing, qPCR remains a standard method for gene expression analyses, with its data normalization step being crucial for ensuring accuracy. Currently, the most widely used normalization method is based on the use of reference genes, assumed to be stably expressed across all experimental conditions. In the present study, we show that finding a stable combination of genes, regardless of their individual stability, outperforms standard reference genes for RT-qPCR data normalization. A stable combination of genes consists of a fixed number of genes whose individual expression balance each other all along experimental conditions of interest. Moreover, the present study shows that such an optimal combination of genes can be found using a comprehensive database of RNA-Seq data. Indeed, assuming that such a comprehensive database contains accurate gene expression profiles, we can extract in silico, by the way of the mathematical variance calculation, a stable combination of genes that reflects in vivo stability. As a case study, this new method was developed using the tomato model plant, with corresponding RNA-Seq data from the TomExpress database. However, the method is potentially applicable to other organisms with available RNA-seq data. Our results demonstrate the superiority of the reported method over commonly used housekeeping genes or other stably expressed genes. We therefore recommend the use of our new method together with classic ones in order to always obtain the best reference genes for a given experimental design.
format Article
id doaj-art-4aa947ec2de445fcb94de459506a91c7
institution OA Journals
issn 2045-2322
language English
publishDate 2024-12-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-4aa947ec2de445fcb94de459506a91c72025-08-20T02:24:30ZengNature PortfolioScientific Reports2045-23222024-12-0114111410.1038/s41598-024-82651-wA stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalizationAnis Djari0Guillaume Madignier1Christian Chervin2Benoît van der Rest3James J. Giovannoni4Mondher Bouzayen5Julien Pirrello6Elie Maza7Laboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseBoyce Thompson InstituteLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseAbstract Gene expression profiling is of key importance in all domains of life sciences, as medicine, environment, and plants, for both basic and applied research. Despite the emergence of microarrays and high-throughput sequencing, qPCR remains a standard method for gene expression analyses, with its data normalization step being crucial for ensuring accuracy. Currently, the most widely used normalization method is based on the use of reference genes, assumed to be stably expressed across all experimental conditions. In the present study, we show that finding a stable combination of genes, regardless of their individual stability, outperforms standard reference genes for RT-qPCR data normalization. A stable combination of genes consists of a fixed number of genes whose individual expression balance each other all along experimental conditions of interest. Moreover, the present study shows that such an optimal combination of genes can be found using a comprehensive database of RNA-Seq data. Indeed, assuming that such a comprehensive database contains accurate gene expression profiles, we can extract in silico, by the way of the mathematical variance calculation, a stable combination of genes that reflects in vivo stability. As a case study, this new method was developed using the tomato model plant, with corresponding RNA-Seq data from the TomExpress database. However, the method is potentially applicable to other organisms with available RNA-seq data. Our results demonstrate the superiority of the reported method over commonly used housekeeping genes or other stably expressed genes. We therefore recommend the use of our new method together with classic ones in order to always obtain the best reference genes for a given experimental design.https://doi.org/10.1038/s41598-024-82651-w
spellingShingle Anis Djari
Guillaume Madignier
Christian Chervin
Benoît van der Rest
James J. Giovannoni
Mondher Bouzayen
Julien Pirrello
Elie Maza
A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization
Scientific Reports
title A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization
title_full A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization
title_fullStr A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization
title_full_unstemmed A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization
title_short A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization
title_sort stable combination of non stable genes outperforms standard reference genes for rt qpcr data normalization
url https://doi.org/10.1038/s41598-024-82651-w
work_keys_str_mv AT anisdjari astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT guillaumemadignier astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT christianchervin astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT benoitvanderrest astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT jamesjgiovannoni astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT mondherbouzayen astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT julienpirrello astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT eliemaza astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT anisdjari stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT guillaumemadignier stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT christianchervin stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT benoitvanderrest stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT jamesjgiovannoni stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT mondherbouzayen stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT julienpirrello stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization
AT eliemaza stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization