A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization
Abstract Gene expression profiling is of key importance in all domains of life sciences, as medicine, environment, and plants, for both basic and applied research. Despite the emergence of microarrays and high-throughput sequencing, qPCR remains a standard method for gene expression analyses, with i...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-12-01
|
| Series: | Scientific Reports |
| Online Access: | https://doi.org/10.1038/s41598-024-82651-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850156530298519552 |
|---|---|
| author | Anis Djari Guillaume Madignier Christian Chervin Benoît van der Rest James J. Giovannoni Mondher Bouzayen Julien Pirrello Elie Maza |
| author_facet | Anis Djari Guillaume Madignier Christian Chervin Benoît van der Rest James J. Giovannoni Mondher Bouzayen Julien Pirrello Elie Maza |
| author_sort | Anis Djari |
| collection | DOAJ |
| description | Abstract Gene expression profiling is of key importance in all domains of life sciences, as medicine, environment, and plants, for both basic and applied research. Despite the emergence of microarrays and high-throughput sequencing, qPCR remains a standard method for gene expression analyses, with its data normalization step being crucial for ensuring accuracy. Currently, the most widely used normalization method is based on the use of reference genes, assumed to be stably expressed across all experimental conditions. In the present study, we show that finding a stable combination of genes, regardless of their individual stability, outperforms standard reference genes for RT-qPCR data normalization. A stable combination of genes consists of a fixed number of genes whose individual expression balance each other all along experimental conditions of interest. Moreover, the present study shows that such an optimal combination of genes can be found using a comprehensive database of RNA-Seq data. Indeed, assuming that such a comprehensive database contains accurate gene expression profiles, we can extract in silico, by the way of the mathematical variance calculation, a stable combination of genes that reflects in vivo stability. As a case study, this new method was developed using the tomato model plant, with corresponding RNA-Seq data from the TomExpress database. However, the method is potentially applicable to other organisms with available RNA-seq data. Our results demonstrate the superiority of the reported method over commonly used housekeeping genes or other stably expressed genes. We therefore recommend the use of our new method together with classic ones in order to always obtain the best reference genes for a given experimental design. |
| format | Article |
| id | doaj-art-4aa947ec2de445fcb94de459506a91c7 |
| institution | OA Journals |
| issn | 2045-2322 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Scientific Reports |
| spelling | doaj-art-4aa947ec2de445fcb94de459506a91c72025-08-20T02:24:30ZengNature PortfolioScientific Reports2045-23222024-12-0114111410.1038/s41598-024-82651-wA stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalizationAnis Djari0Guillaume Madignier1Christian Chervin2Benoît van der Rest3James J. Giovannoni4Mondher Bouzayen5Julien Pirrello6Elie Maza7Laboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseBoyce Thompson InstituteLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseLaboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de ToulouseAbstract Gene expression profiling is of key importance in all domains of life sciences, as medicine, environment, and plants, for both basic and applied research. Despite the emergence of microarrays and high-throughput sequencing, qPCR remains a standard method for gene expression analyses, with its data normalization step being crucial for ensuring accuracy. Currently, the most widely used normalization method is based on the use of reference genes, assumed to be stably expressed across all experimental conditions. In the present study, we show that finding a stable combination of genes, regardless of their individual stability, outperforms standard reference genes for RT-qPCR data normalization. A stable combination of genes consists of a fixed number of genes whose individual expression balance each other all along experimental conditions of interest. Moreover, the present study shows that such an optimal combination of genes can be found using a comprehensive database of RNA-Seq data. Indeed, assuming that such a comprehensive database contains accurate gene expression profiles, we can extract in silico, by the way of the mathematical variance calculation, a stable combination of genes that reflects in vivo stability. As a case study, this new method was developed using the tomato model plant, with corresponding RNA-Seq data from the TomExpress database. However, the method is potentially applicable to other organisms with available RNA-seq data. Our results demonstrate the superiority of the reported method over commonly used housekeeping genes or other stably expressed genes. We therefore recommend the use of our new method together with classic ones in order to always obtain the best reference genes for a given experimental design.https://doi.org/10.1038/s41598-024-82651-w |
| spellingShingle | Anis Djari Guillaume Madignier Christian Chervin Benoît van der Rest James J. Giovannoni Mondher Bouzayen Julien Pirrello Elie Maza A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization Scientific Reports |
| title | A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization |
| title_full | A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization |
| title_fullStr | A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization |
| title_full_unstemmed | A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization |
| title_short | A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization |
| title_sort | stable combination of non stable genes outperforms standard reference genes for rt qpcr data normalization |
| url | https://doi.org/10.1038/s41598-024-82651-w |
| work_keys_str_mv | AT anisdjari astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT guillaumemadignier astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT christianchervin astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT benoitvanderrest astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT jamesjgiovannoni astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT mondherbouzayen astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT julienpirrello astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT eliemaza astablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT anisdjari stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT guillaumemadignier stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT christianchervin stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT benoitvanderrest stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT jamesjgiovannoni stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT mondherbouzayen stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT julienpirrello stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization AT eliemaza stablecombinationofnonstablegenesoutperformsstandardreferencegenesforrtqpcrdatanormalization |