Emergence of Classical Random Walk from Non-Hermitian Effects in Quantum Kicked Rotor

We investigate the quantum random walk in momentum space of a spinor kicked rotor with a non-Hermitian kicking potential. We find that the variance in momentum distributions transitions from quadratic to linear growth over time for the non-Hermitian case. Correspondingly, the momentum distributions...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenxuan Song, Jiaming Zhang, Lihao Hua, Zhihua Xiong, Wenlei Zhao
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/3/288
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the quantum random walk in momentum space of a spinor kicked rotor with a non-Hermitian kicking potential. We find that the variance in momentum distributions transitions from quadratic to linear growth over time for the non-Hermitian case. Correspondingly, the momentum distributions are in the shape of Gaussian wavepackets, providing clear evidence of a classical random walk induced by the non-Hermitian-driven potential. Remarkably, the rate of the linear growth of the variance diverges as the non-Hermitian parameter approaches zero. In the Hermitian case, deviations from the quantum resonance condition dramatically suppress the quadratic growth of the variance, leading to dynamical localization of the quantum walk. Under such quantum non-resonance conditions, the classical random walk is significantly reduced by the non-Hermitian-driven potential. Interestingly, non-Hermiticity enhances quantum entanglement between internal degrees of freedom, while deviations from the quantum resonance condition reduce it. Possible applications of our findings are discussed.
ISSN:1099-4300