Separable functors in corings

We develop some basic functorial techniques for the study of the categories of comodules over corings. In particular, we prove that the induction functor stemming from every morphism of corings has a left adjoint, called ad-induction functor. This construction generalizes the known adjunctions for t...

Full description

Saved in:
Bibliographic Details
Main Author: J. Gómez-Torrecillas
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S016117120201270X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop some basic functorial techniques for the study of the categories of comodules over corings. In particular, we prove that the induction functor stemming from every morphism of corings has a left adjoint, called ad-induction functor. This construction generalizes the known adjunctions for the categories of Doi-Hopf modules and entwined modules. The separability of the induction and ad-induction functors are characterized, extending earlier results for coalgebra and ring homomorphisms, as well as for entwining structures.
ISSN:0161-1712
1687-0425