On the Bishop-Phelps-Bollobás Property for Numerical Radius

We study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show that L1μ-spaces have this property for every measure μ. On the other hand, we show that every infinite-dimensiona...

Full description

Saved in:
Bibliographic Details
Main Authors: Sun Kwang Kim, Han Ju Lee, Miguel Martín
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/479208
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558992677666816
author Sun Kwang Kim
Han Ju Lee
Miguel Martín
author_facet Sun Kwang Kim
Han Ju Lee
Miguel Martín
author_sort Sun Kwang Kim
collection DOAJ
description We study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show that L1μ-spaces have this property for every measure μ. On the other hand, we show that every infinite-dimensional separable Banach space can be renormed to fail the BPBp-nu. In particular, this shows that the Radon-Nikodým property (even reflexivity) is not enough to get BPBp-nu.
format Article
id doaj-art-4a6baccd097c467daa4408750a6e5726
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-4a6baccd097c467daa4408750a6e57262025-02-03T01:31:00ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/479208479208On the Bishop-Phelps-Bollobás Property for Numerical RadiusSun Kwang Kim0Han Ju Lee1Miguel Martín2Department of Mathematics, Kyonggi University, Suwon 443-760, Republic of KoreaDepartment of Mathematics Education, Dongguk University-Seoul, Seoul 100-715, Republic of KoreaDepartamento de Análisis Mátematico, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, SpainWe study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show that L1μ-spaces have this property for every measure μ. On the other hand, we show that every infinite-dimensional separable Banach space can be renormed to fail the BPBp-nu. In particular, this shows that the Radon-Nikodým property (even reflexivity) is not enough to get BPBp-nu.http://dx.doi.org/10.1155/2014/479208
spellingShingle Sun Kwang Kim
Han Ju Lee
Miguel Martín
On the Bishop-Phelps-Bollobás Property for Numerical Radius
Abstract and Applied Analysis
title On the Bishop-Phelps-Bollobás Property for Numerical Radius
title_full On the Bishop-Phelps-Bollobás Property for Numerical Radius
title_fullStr On the Bishop-Phelps-Bollobás Property for Numerical Radius
title_full_unstemmed On the Bishop-Phelps-Bollobás Property for Numerical Radius
title_short On the Bishop-Phelps-Bollobás Property for Numerical Radius
title_sort on the bishop phelps bollobas property for numerical radius
url http://dx.doi.org/10.1155/2014/479208
work_keys_str_mv AT sunkwangkim onthebishopphelpsbollobaspropertyfornumericalradius
AT hanjulee onthebishopphelpsbollobaspropertyfornumericalradius
AT miguelmartin onthebishopphelpsbollobaspropertyfornumericalradius