On the Bishop-Phelps-Bollobás Property for Numerical Radius
We study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show that L1μ-spaces have this property for every measure μ. On the other hand, we show that every infinite-dimensiona...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/479208 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558992677666816 |
---|---|
author | Sun Kwang Kim Han Ju Lee Miguel Martín |
author_facet | Sun Kwang Kim Han Ju Lee Miguel Martín |
author_sort | Sun Kwang Kim |
collection | DOAJ |
description | We study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show that L1μ-spaces have this property for every measure μ. On the other hand, we show that every infinite-dimensional separable Banach space can be renormed to fail the BPBp-nu. In particular, this shows that the Radon-Nikodým property (even reflexivity) is not enough to get BPBp-nu. |
format | Article |
id | doaj-art-4a6baccd097c467daa4408750a6e5726 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-4a6baccd097c467daa4408750a6e57262025-02-03T01:31:00ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/479208479208On the Bishop-Phelps-Bollobás Property for Numerical RadiusSun Kwang Kim0Han Ju Lee1Miguel Martín2Department of Mathematics, Kyonggi University, Suwon 443-760, Republic of KoreaDepartment of Mathematics Education, Dongguk University-Seoul, Seoul 100-715, Republic of KoreaDepartamento de Análisis Mátematico, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, SpainWe study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show that L1μ-spaces have this property for every measure μ. On the other hand, we show that every infinite-dimensional separable Banach space can be renormed to fail the BPBp-nu. In particular, this shows that the Radon-Nikodým property (even reflexivity) is not enough to get BPBp-nu.http://dx.doi.org/10.1155/2014/479208 |
spellingShingle | Sun Kwang Kim Han Ju Lee Miguel Martín On the Bishop-Phelps-Bollobás Property for Numerical Radius Abstract and Applied Analysis |
title | On the Bishop-Phelps-Bollobás Property for Numerical Radius |
title_full | On the Bishop-Phelps-Bollobás Property for Numerical Radius |
title_fullStr | On the Bishop-Phelps-Bollobás Property for Numerical Radius |
title_full_unstemmed | On the Bishop-Phelps-Bollobás Property for Numerical Radius |
title_short | On the Bishop-Phelps-Bollobás Property for Numerical Radius |
title_sort | on the bishop phelps bollobas property for numerical radius |
url | http://dx.doi.org/10.1155/2014/479208 |
work_keys_str_mv | AT sunkwangkim onthebishopphelpsbollobaspropertyfornumericalradius AT hanjulee onthebishopphelpsbollobaspropertyfornumericalradius AT miguelmartin onthebishopphelpsbollobaspropertyfornumericalradius |